# Review

# Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods

Ryszard Amarowicz<sup>1</sup>, Reinhold Carle<sup>2</sup>, Gerhard Dongowski<sup>3</sup>, Alessandra Durazzo<sup>4</sup>, Rudolf Galensa<sup>5</sup>, Dietmar Kammerer<sup>2</sup>, Guiseppe Maiani<sup>4</sup> and Mariusz K. Piskula<sup>1</sup>

- <sup>1</sup> Institute of Animal Reproduction and Food Research, Polish Academy of Science, Olsztyn, Poland
- <sup>2</sup> Institute of Food Technology, University of Hohenheim, Stuttgart, Germany
- <sup>3</sup> German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- <sup>4</sup> National Research Institute for Food and Nutrition, Roma, Italy
- <sup>5</sup> Institute of Nutrition and Food Sciences, University of Bonn, Bonn, Germany

The review is based on the evaluation of electronically collated data published between 2002 to June 2006. It is based on 325 references dealing with the following subclasses of phenolic compounds: hydroxycinnamic and hydroxybenzoic acids, chalcones, flavanones, flavones, flavones, monomeric flavanols and anthocyanins. Only publications dealing directly with the effects of storage and post-harvest processing on the phenolic acid and flavonoid contents of foods were considered. The expectation that the structural diversity even within each subgroup, and the number of different procedures and of different parameters would make finding homogenous tendencies unlikely, has, in most instances, been confirmed. By adding a database Excel table combined with a focused and unified evaluation, specific additional information was rendered accessible and concise. It holds true for most of the subclasses in question that the effect of storage and food processing on the polyphenol content is negligible in comparison to the differences between different varieties of plants. Variety dependence must always be considered, for all classes of compounds.

**Keywords:** Flavonoids / Food processing / Food storage / Phenolic acids / Postharvest processing

Received: Novmber 27, 2007; revised: April 8, 2008; accepted: May 5, 2008



### 1 Introduction and data evaluation

The following review is based on the evaluation of electronically collated data published on phenolic acids and flavonoids between 2002 and June 2006. It contains 325 references dealing with the following subclasses of phenolic compounds: hydroxycinnamic and hydroxybenzoic acids, chalcones, flavanones, flavones, flavonols, monomeric flavanols and anthocyanins.

The aim of this work was to gain data on the content of the phenolic acids and flavonoids which could then be used to provide first indications on their bioavailability in the analysed foods. As there are already a multitude of publica-

**Correspondence:** Professor Rudolf Galensa, Department of Food Chemistry, Institute of Nutrition and Food Sciences (IEL), University of Bonn, Endenicher Allee 11-13, 53115 Bonn, Germany

E-mail: galensa@uni-bonn.de Fax: +49-228-733757

**Abbreviation:** CA, controlled atmosphere; FW, fresh weight; MA, modified atmosphere; MCP, 1-methylcyclopropene; PAL, phenylalanine ammonia lyase; PPO, polyphenoloxidase

tions about these substances, including some relatively new reviews, it was decided to focus on the available literature of publications dealing directly with the effects of storage and postharvest processing on the phenolic acid and flavonoid content of foods. More detailed information about the documented influence of postharvest processing and storage on the bioavailability of flavonoids and phenolic acids in foodstuffs will be published elsewhere [1].

The selected publications have been evaluated according to a given pattern and the acquired data compiled into an extensive Excel table (see Supporting Information) with the following column titles:

'Food source' (includes all mentioned foods in the cited publication), 'Substance classes', 'Individual compounds' (includes the names of all mentioned compounds in the cited publication), 'Postharvest action', 'Aspects of storage', 'Aspects of food processing' (these three columns contain the treatments or procedures investigated, e.g. storage conditions, freezing, irradiation, bread making, fermentation and so on), 'Aspects of content' (provides details about changes in content produced by processing proce-



dures), 'Aspects of bioavailability' (gives brief information about whether there are any aspects mentioned; this is important for the second part of the publication which deals with bioavailability [1]), 'Complete title of the application', 'Authors', and 'References'.

This Excel table is available as Supporting Information. In this electronic form, individual searches (*e.g.* for individual compounds or treatments) can be performed using normal Excel functions.

Selected typical publications from the Excel (without the bibliographic data) are summarized in Table 1.

In the following sections, the most important data according to the different compound classes are discussed in detail with five identical subtitles for each class:

'Biosynthesis' (includes brief information about the position of the class of compounds in the pathway and/or individual specialities), 'Food sources' (the list of the investigated foods combined with the relevant numbers of the Excel table, see Supporting Information), 'Aspects of post-harvest processing and storage procedures' (this list gives an enumeration of all the different measures or procedures investigated, combined with the corresponding numbers in the Excel table, see Supporting Information), 'Structures of individual compounds, content and changes in content in foods' (this section is the most important part; it includes a short evaluation of interesting results for some substances and how their contents changes in foods under the described procedures), and 'Summary' of the class of compounds.

In some references, the effects of postharvest processing and storage on the content of total polyphenols or general effects of phenolic compounds are given [8, 10, 24–38].

# 2 Phenolic acids (hydroxycinnamic acids, hydroxybenzoic acids)

The structure of hydroxycinnamic and hydroxybenzoic acids is given in Fig. 1.

### 2.1 Biosynthesis

The phenolic acids present in plant raw material and food of plant origin are derivatives of two phenolic compounds – benzoic and cinnamic acids. The basic pathway of synthesis of phenolic acids in plants leads from sugars through to aromatic amino acids – phenylalanine, and, in some rare cases, tyrosine. Deamination of amino acids to the appropriate phenolic acids occurs as follows: *trans*-cinnamic acid from phenylalanine and *p*-hydroxycinnamic acid from tyrosine are catalysed by phenylalanine ammonia lyase (PAL). Derivative of cinnamic acid are generated during the successive methylation and hydroxylation of cinnamic acid catalysed by cinnamic acid hydroxylase (C4H). Derivatives of benzoic acid can be generated from dihydroshikimic acid or *p*-coumaric acid through *p*-coumaroyl/CoA. Synthesis of

**Hydroxycinnamic acids** *p*-coumaric acid: R = H caffeic acid: R = OH

Hydroxybenzoic acids gallic acid

**Figure 1.** Structure of hydroxycinnamic acids (A) and hydroxybenzoic acids (B). Figure has kindly been provided by Rainer Cermak [1].

phenolic acid thioesters occurs with the aid of ligase/*p*-coumaric acid/CoA (4CL).

# 2.2 Food sources

The following list presents the food sources of phenolic acids and the papers in which they were discussed:

Apples and apple juice [16, 39–41], cherries [23, 42–44], pears [45, 46], must and wine [17, 20, 47–54], sherry vinegar [55], sherry wine [56], winemaking waste solids [57], blueberries and blueberry juice [14, 58–62], raspberries [4], strawberries [63, 64], bayberries (*Myrica rubra*) [65], orange peel [66], mangos [67], passion fruit juice [68], dates [69], broccoli [70, 71], lettuce [3], tomatoes [72–74], potatoes [75, 76], jicama [77], carrots [78], asparagus [79, 80], leavy vegetables [81], legumes [22, 53, 82], olives and olive oil [83–85], rye [86], oat [87], sorghum [88], wheat bran [89, 90], cereal brans [91], barley [92], rice [93], sesame [94], sea buckthorn [95], mustard seeds [96], coffee beans [97], soybeans [98, 99], artichokes [100], yams (*Discorea* spp.) [101], roselles (*Hibiscus sabdariffa* L.) [102], and *Argania spinosa* oil and press cake [103].

# 2.3 Aspects of postharvest processing and storage procedures

The following aspects are mentioned in the papers:

Storage under different conditions [3, 14, 16, 20, 23, 40, 41–43, 46, 49, 53, 63, 67, 68, 70, 74, 75, 77–80, 83, 91, 100, 102], washing treatment [78, 104], blanching [59, 65, 101], drying [102], sun-drying [37, 45], treatment with a growth regulator [23, 41], alkaline and acid hydrolysis [90],

Table 1. Influence of postharvest processing and storage on the content of phenolic acids and flavonoids in foods

| Food source                                  | Substance classes                                                               | Individual substances                                                                                                                                                                             | Postharvest action                                                                               | Aspects of storage                                           | Aspects of food processing                                                                                                                                            | Aspects of content                                                                                                                                                                                       | Aspects<br>of bioa-<br>vailability | Refe-<br>rences |
|----------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|
| Grape juices,<br>wine                        | Anthocyanines,<br>flavonols,<br>ellagic acid                                    | 3,5-Diglucosides of<br>delphinidin, cyanidin,<br>petunidin, pelargonidin,<br>peonidin, malvidin,<br>myricetin quercetin,<br>kaempferol, ellagic<br>acid                                           | No                                                                                               | 60 days                                                      | Juices and wines<br>were produced by<br>hot- and cold-<br>pressed techni-<br>ques; wine was<br>produced following<br>on-hull fermen-<br>tation for 3, 5 and<br>7 days | After storage, wines had lower concentration of individual polyphenolic compounds; processing methods were important factors influencing flavonoids                                                      | No                                 | [2]             |
| Brocooli,<br>lettuce                         | Total phenolics                                                                 | No                                                                                                                                                                                                | Storage in<br>argon, helium<br>and nitrogen<br>atmosphere<br>containing 2%<br>oxygen             | 7 and 9 days                                                 | No                                                                                                                                                                    | The content of total phe-<br>nolics was reduced in re-<br>lation to the control sam-<br>ple (stored at air)                                                                                              |                                    | [3]             |
| Red<br>raspberries                           | Total phenolics,<br>anthocyanins                                                | Cyanidin-3-sophoro-<br>side, cyanidin-3-(2G-<br>glucosylrutinoside),<br>cyanidin-3-glucoside,<br>cyanidin-3-rutinoside,<br>pelargonidin-3-sophoro-<br>side, pelargonidin-3-<br>glucose-rutinoside | Freezing                                                                                         | Storage at<br>4°C for 3 days<br>and then at<br>18°C for 24 h | No                                                                                                                                                                    | Anthocyanin levels were unaffected while vitamin C levels declined and those of elligitannins increased; no effect on the antioxidant capacity                                                           | No                                 | [4]             |
| Oranges                                      | Vitamin C,<br>phenolics, fla-<br>vones, flava-<br>nones, hydroxy-<br>cinnamates | L-Ascorbic acid and<br>L-dehydroascorbic acid,<br>caffeic acid derivatives,<br>vicenin 2, narirutin                                                                                               | Squeezing, mild<br>pasteurization,<br>standard pasteu-<br>rization, concen-<br>tration, freezing |                                                              | Squeezing, mild<br>pasteurization,<br>standard pasteuri-<br>zation, concentra-<br>tion and freezing                                                                   | Freezing process caused<br>a decrease in phenolics;<br>pasteurization increased<br>vitamin C content                                                                                                     | Yes                                | [5]             |
| Rooibos                                      | Flavonoids,<br>chalcone                                                         | Aspalatin, nothofagin                                                                                                                                                                             | No                                                                                               | No                                                           | Fermentation                                                                                                                                                          | Loss of both dihydrochal-<br>cons                                                                                                                                                                        | · No                               | [6]             |
| Grape juice                                  | Procyanidins,<br>catechins,<br>flavones                                         | Flavan-3-ols, (+)-cate-<br>chin, (-)-epicatechin                                                                                                                                                  | Pressing                                                                                         | No                                                           | Pressing, pasteurization                                                                                                                                              | Pasteurization increased the concentration of catechins in cold-pressed juices, but it decreased concentrations in hotpressed juices; concentration of most procyanidins was increased by pasteurization | No                                 | [7]             |
| Marionberries,<br>strawberries,<br>corn      | Phenolics,<br>flavonols                                                         | Ascorbic acid                                                                                                                                                                                     | Freezing, freeze-<br>drying, air-drying                                                          |                                                              | Freezing, freeze-<br>drying, air-drying                                                                                                                               | Freeze-drying preserved<br>higher levels of total<br>phenolics in comparison<br>with air-drying                                                                                                          | No                                 | [8]             |
| Orange juice                                 | Flavanones                                                                      | Naringenin glycosides,<br>hesperidin glycosides                                                                                                                                                   | No                                                                                               | No                                                           | Freshly squeezed<br>juice, traditional<br>pasteurization,<br>short-time pasteri-<br>zation, freezed<br>juice                                                          | Highest flavanone con-<br>tent in traditional pas-<br>teurized juice; lowest fla-<br>vanone content in<br>freezed juice                                                                                  | No                                 | [9]             |
| Tomato prod-<br>ucts (pulp,<br>puree, paste) | Total phenolics                                                                 | Rutin                                                                                                                                                                                             | No                                                                                               | Yes                                                          | 3 months at 30,<br>40 and 50°C                                                                                                                                        | Decrease in total phenolics at >40°C                                                                                                                                                                     | No                                 | [10]            |
| Apples                                       | Flavanones, flavanols                                                           | Luteolinflavan, luteolin-<br>flavan-5-glucoside,<br>eriodictyol-7-glucoside,<br>6"-0-trans-p-couma-<br>royleriodictyol-3"-gluco-<br>side                                                          | leaves were<br>frozen in liquid<br>nitrogen                                                      | No                                                           |                                                                                                                                                                       | The content of phenyl-<br>propanoids was influ-<br>enced by prohexadione                                                                                                                                 | Yes                                | [11]            |

Table 1. Continued

| Food source                                                                      | Substance classes                                           | Individual substances                                                                                                                                                                                                                                                               | Postharvest action                                                                                                                                                                                                                                | Aspects of storage                                                                                                                             | Aspects of food processing                                                                                                                                                               | Aspects of content                                                                                                                                                                                                                                          | Aspects<br>of bioa-<br>vailability | Refe-<br>rences |
|----------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|
| Plums                                                                            | Flavonols,<br>anthocyanidins                                | Rutin, quercetin-3-<br>galactoside, quercetin-<br>3-glucoside, cyanidin-<br>3-glucoside, cyanidin-<br>3-rutinoside, peonidin-<br>3-glucoside                                                                                                                                        | Refrigerating:<br>plums were<br>stored at 2 – 5°C                                                                                                                                                                                                 | No                                                                                                                                             | Cutting, lyophilizing, freezing: plums were cut in half and the pits removed; pitted plums were frozen and lyophilized, and then dried samples were ground to powder and stored at -20°C | Determination of flavo-<br>noids of different variety<br>of plums: rutin was the<br>most predominant flavo-<br>nol                                                                                                                                          | No                                 | [12]            |
| Apples,<br>cherries,<br>strawberries,<br>blackberries,<br>grapes, apple<br>juice | acids, hydroxy-<br>cinnamic acids,                          | Gallic acid, p-coumaric<br>acid, chlorogenic acid,<br>(+)-catechin, (-)-epi-<br>catechin, procyanidin<br>B1, procyanidin B2,<br>kaempferol, quercetin,<br>phlotetin, phloredzin,<br>pelargonidin, cyaniding                                                                         | The fruits were<br>purchased from<br>a local super-<br>market                                                                                                                                                                                     | No                                                                                                                                             | Peeling (for<br>apples), depitting<br>(for cherries and<br>grapes)                                                                                                                       | Determination of flavo-<br>noid concentration in<br>different parts of each<br>fruit                                                                                                                                                                        | No                                 | [13]            |
| Blueberries                                                                      | Anthocyanidins,<br>flavonols, hy-<br>droxycinnamic<br>acids |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                   | Freshly harvested blueber ries were placed in jars, ventilated continuously with air or with 40, 60, 80 or 100% $O_2$ at 5°C for up to 35 days | 6                                                                                                                                                                                        | Changes of flavonoids in blueberry during storage in air or high- $O_2$ atmospheres                                                                                                                                                                         | No                                 | [14]            |
| Grapes                                                                           | Flavanols, antho cyanins                                    | -Delphinidin, cyanidin, petunidin, peonidin, malvidin-3-glucoside, malvidin-acetyl-3-glucosides, malvidin coumaroyl-3-glucosides, malvidin caffeoyl-3-glucosides, vitisin B, catechin, epicatechin (dimers, trimers, tetramers), coumaric acid derivatives, galloylated derivatives | Selection: after being sorted to remove damaged grapes, that were destemmed and transferred to the vats for controlled fermentation at a temperature of betweer 25 and 28°C with the addition of a small amount of SO <sub>2</sub> ; fermentation | 9                                                                                                                                              | Fermentation                                                                                                                                                                             | Determination of flavo-<br>noids in according to<br>different period of grape-<br>harvest: the characteris-<br>tics and the composition<br>of grapes harvested later<br>than the usual time are<br>quite beneficial to ob-<br>taining quality aged<br>wines |                                    | [15]            |
| Apples                                                                           | Polyphenols,<br>flavonoids,<br>flavones                     | Cholorogenic acid, phloridzin, catechins                                                                                                                                                                                                                                            | Storage                                                                                                                                                                                                                                           | Storage for<br>4 month                                                                                                                         | No                                                                                                                                                                                       | During storage, concentration of catechin and phloridzin increased                                                                                                                                                                                          | Yes                                | [16]            |

Table 1. Continued

| Food source                     | Substance<br>classes                                                   | Individual substances                                                                                                                                                                                                                           | Postharvest action                                                                              | Aspects of storage                         | Aspects of food processing                                                                                                                                         | Aspects of content                                                                                                            | Aspects<br>of bioa-<br>vailability | Refe-<br>rences |
|---------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|
| Sherry wine                     | Hydroxyben-<br>zoic acids,<br>hydroxycinna-<br>mic acids,<br>flavanols | Gallic acid, syringic acid, cartaric acid, 2-S-glutathionyl caftaric acid, cis p-coutaric acid, trans p-coutaric acid, fertaric acid, fertaric acid, trans p-coumaric acid, ferulic acid, procyanidin B1, catechin, procyanidin B2, epicatechin | Different de-<br>grees of des-<br>temming (0,<br>25, 50 and<br>75%), fermen-<br>tation of musts | Sampling<br>after 0, 2, 4, 6<br>and 9 days | Fermentation                                                                                                                                                       | Increase of some compounds during alcoholic fermentation                                                                      | No                                 | [17]            |
| Нор                             | Chalcone, fla-<br>vone                                                 | Xanthohumol, 8- and<br>6-prenyl-naringenin,<br>isoxanthohumol                                                                                                                                                                                   | Extraction with CO <sub>2</sub> and alcohols                                                    | No                                         | Extraction                                                                                                                                                         | Improved extractability of chalcones and flavones                                                                             | No                                 | [18]            |
| Wheat                           | Phenolics,<br>flavonoids,<br>ferulic acid,<br>carotenoids              | Catechin, lutein, zeaxanthin, β-crypto-xanthin                                                                                                                                                                                                  | Milling                                                                                         | No                                         | Milling (endo-<br>sperm and bran/<br>germ fractions)                                                                                                               | Different milled fractions<br>of wheat have different<br>profiles of both hydro-<br>philic and lipophilic phy-<br>tochemicals | Yes                                | [19]            |
| Red wine                        | Polyphenols                                                            | Gallic acid                                                                                                                                                                                                                                     | No                                                                                              | Storage<br>at 25 and<br>37°C               | No                                                                                                                                                                 | The older wines had a lower antioxidant ability                                                                               | No                                 | [20]            |
| Grapefruit<br>juice and<br>pulp | Flavanones,<br>furanocouma-<br>rins                                    | Bergamottin, 6',7'-dihydroxybergamottin, 6',7'-epoxybergamottin, 7-geranyloxycoumarin                                                                                                                                                           | Extracting juice                                                                                | No                                         | Freshly extracted juice [raw finished juice (~5% fine pulp), centrifugal retentate (~35% fine pulp), centrifuged supernatant (<1% pulp), and coarse finisher pulp] | The centrifugal retentate had the highest furano-coumarin content                                                             | Yes                                | [21]            |
| Beans                           | Flavanols, hy-<br>droxybenzoic<br>acids, hydroxy-<br>cinnamic acids    | Kaempferol, quercetin,<br>p-hydroxybenzoic acid,<br>vanillic acid, p-coumaric<br>acid, ferulic acid (daid-<br>zein, genistein, coumes-<br>trol)                                                                                                 |                                                                                                 | No                                         | Cooking                                                                                                                                                            | Decrease during cooking; increase in germination                                                                              | No                                 | [22]            |
| Sweet cherries                  | Hydroxycinna-<br>mic acids,<br>anthocyanins                            | Cyanidin, pelargonidin,<br>peonidin, neochloro-<br>genic, p-coumarylquinic<br>acids                                                                                                                                                             | MCP                                                                                             | Cold storage                               | No                                                                                                                                                                 | Alteration not significant                                                                                                    | No                                 | [23]            |

juice centrifugation [65], flash release process [54], cowinemaking and wine aging [52, 56, 105], grape destemming [17], fermentation [44, 57], germination [22, 82, 93], extraction [60, 84, 85, 89], thermal stability [44], bread making [86], cooking [22], roasting [97], stir-baked processing [96], steaming [87], thermal treatment [50, 58, 68, 81], SO<sub>2</sub> treatment [106], break-process [72], freezing [4, 71], freeze-drying [64], maceration [47, 48, 51], enzymatic treatment [39, 60], malting [92], and peeling and cutting [76].

The observed effects of some of these will be discussed with reference to their application in given foodstuffs in the following sections.

# 2.4 Structures of individual compounds, content and changes in content in foods

The storage of seven commercial apple juices for 11 months resulted in a decrease in phenolic acids from 5 to 21% [40]. Apples (Annurca variety) showed a marked increase in chlorogenic acid during storage: 101 mg/kg fresh weight (FW) after harvest, 131 mg/kg FW after 3 months and 144 mg/kg FW after 4 months [16]. In raw juices obtained from apples using straight pressing, the level of chlorogenic acid was reduced to about 50% when compared to that in fresh apples [39]. The chlorogenic acid biosynthesis of apples harvested early or at optimum maturity was greatly inhibited by a growth regulator during a

120-day storage period and 1 wk shelf-life [41]. Sun-drying modified the content of chlorogenic and *p*-coumaric acids in the methanol extract obtained from Portuguese pears (*Pyrus communis* L. var. S. Bartolomeu) [45].

The storage period (6 or 30 days) induced some variation in the phenolic acid content of cherries, although the final tendency was a reduction in these levels after storage at  $1-2^{\circ}$ C and an increase in cherries at  $15 \pm 5^{\circ}$ C [42]. The changes in hydroxycinnamates among the four cherry cultivars during cold storage ( $2^{\circ}$ C for 30 days) were not consistent [43]. Several phenolic acids (protocatechuic, chlorogenic, caffeic and *p*-coumaric acids) were found during production of permez made from the concentrated juice of cherry laurel varieties [44]. After the storage of sweet cherries treated with a growth regulator, the content of chlorogenic acid decreased from 427 to 334 mg/kg FW [23].

The heat and SO<sub>2</sub> treatments of blueberries did not change the content of total phenolic acids (the sum of p-hydroxybenzoic, vanillic, chlorogenic, caffeic, syringic, ferulic and o-coumaric acids) in pressed juice, clarified juice, pasteurized juice and concentrate [58]. No significant differences in the content of chlorogenic acid in highbush blueberries were observed during storage at high-oxygen atmospheres (at 5°C for 35 days; 40, 60, 80 and 100% O<sub>2</sub>) [14]. The total cinnamate content of highbush blueberry juices made from blanched material was 348 mg/kg juice and from nonblanched material 26.0 mg/100 g [59]. Enzyme treatment of the blueberry processing waste had little effect on total phenolic recovery. Cinnamic acid derivatives (chlorogenic, caffeic and syringic acids) were found in the skins and seeds [60]. The fermentation of the lowbush blueberry by a novel bacterium from the fruit microflora resulted in the production of gallic acid [61].

The content of hydroxybenzoic acids increased (50–150%) in the centrifuged juices of bayberries, after the primary steps of processing (crushing, depectinization, centrifugation, pasterization and blanching) [65]. Storage ( $4^{\circ}$ C for 72 h) of strawberries reduced the content of p-coumaric and chlorogenic acids from 74 to 58  $\mu$ mol/100 g FW and from 440 to 320  $\mu$ mol/kg FW, respectively [63]. The content of cinnamic acid derivatives in the flesh of strawberries expressed as chlorogenic acid was not affected by freezedrying [64]. A decrease in the content of free p-coumaric acid and an increase in that of conjugated p-coumaric acid were observed in frozen red raspberries [4].

The extraction efficiency of hydroxycinnamic acids from olive mill waste was highest when 50% v/v aqueous solutions of ethanol, propanol, ACN and acetone were used [85]. The two-phase decanter method preserved more of the phenolic content than the three-phase method by which the oil, water and husk is separated from the olive paste [84]. Far-infrared irradiation may be able to cleave covalent bonds and liberate phenolic acids from the repeating polymers present in sesame seeds [94]. Storage temperature was the major factor contributing to the changes in gallic acid

content in mangos. Free gallic acid was unaffected by hot water treatment (for 60 min at 50°C) [67]. Sun-drying significantly increased the concentration of free and bound phenolic acids (gallic, protocatechuic, *p*-hydroxybenzoic, vanillic, caffeic, syringic, *p*-coumaric, ferulic and *o*-coumaric acids) of three varieties of dates [69].

During postharvest storage, asparagus experienced a general increase in ferulic acid monomers and dimers that affected every section of both green and white spears [80]. Storage of asparagus spears (21°C for 3 days) resulted in a considerable increase in phenolic acids (at least three-fold) in each section, particularly in the lower section, and was accompanied by an increase in the proportion of diferulic acid moieties in the mid and lower sections [79]. After 3 wk of postharvest storage, the content of chlorogenic acid in cherry tomatoes was found to be 35% higher than that in the freshly sampled ones [74]. The super cold break-process used for tomato sauce at 65°C under vacuum produced an increase of about 30% in the content of caffeic, p-coumaric and ferulic acids [72]. The content of phenolic acids (the sum of chlorogenic and coumaroylquinic acids) increased throughout the storage of carrots under aerobic conditions

Hand peeling and cutting into strips with a manual potato cutter at room temperature, washing with running water and followed by refrigerated storage (1–6 days) caused a 2.4–8.6-fold increase in the chlorogenic acid content of potatoes [76]. Storage in controlled atmospheres (CAs, 2% O<sub>2</sub>) reduced the accumulation of phenolic compounds by about 35% in both fresh-cut crisphead (Iceberg) lettuce and in the green leaf variety [3]. After cold storage, broccoli lost about 75% of its caffeoyl-quinic derivatives and 40–50% of its sinapic acid and feruloyl derivatives [70].

Destemming of grapes prior to pressing changed the phenolic acid content in Polomino fino sherry samples after 2 days of inoculation and at the end of fermentation but no relationship was observed between degree of destemming and changes in phenolic acid content [17]. The must of grapes treated with the flash release process was characterized by higher amounts of hydroxycinnamic acids [54]. After aging in French oak barrels, wine showed a significant increase in gallic and syringic acids content. This is not surprising as gallic and syringic acid are wood constituents. The ferulic acid content decreased in all wines [52]. The use of macerating enzymes and two enological tannins for the making of Monastrella wines had no effect on the content of gallic, syringic, protocatechuic, m-hydroxybenzoic, vanillic, coumaric, caftaric and ferulic acids but reduced the content of caffeic acid and modified the content of coutaric acid at the bottling stage [51]. The phenolic compound in the wines diminished with storage time, with the exception of caffeic, ferulic and p-coumaric acids. Hydrolysis is mainly responsible for the increase in free phenolic acids [53]. No differences in hydroxycinnamic acid derivative (trans-caffeoyltartaric and trans-p-coumaroyltartaric) content between conventional and ecological red and white wines were observed [49]. In blackcurrant wines, the polyphenol extraction was highest after maceration and pectinolysis. In cherry wines, the highest amount of these compounds was extracted after pectinolysis and pasteurization [47]. The concentration of gallic acid increased in samples of sherry vinegars aged in American oak butts for 360 days. For protocatechuic, *p*-hydroxybenzoic and vanillic acids, there was great variation of the contents [105].

During the soaking period prior to germination, the content of phenolic acids in legume seeds (beans, peas and lentils) decreased. During germination, the increase in the phenolic acids showed different behaviour patterns in those seeds [82]. Washing (three times with sterile distilled water under aseptic condition) and drying (at 55°C for 24 h) slightly modified the phenolic acid composition of cowpea seeds [104]. The germinated bean seeds exhibited lower *p*-hydroxybenzoic acid content, higher vanillic acid and *p*-coumaric acid content than raw bean seeds, while the ferulic acid content were similar [22]. The phenolic acid content of the soybean yellow sprouts produced under dark conditions and green sprouts grown in green and yellow boxes were different [99].

The application of ,activated Germination Malting' caused a limited increase in the concentrations of ferulic and p-coumaric acids in malt, whereas a higher temperature during malting resulted in approx. two-fold higher concentrations of both free phenolic acids in kilned malt. The use of steeping water of pH 5.2 instead of 7.4 resulted in a significant increase in the content of free ferulic and p-coumaric acids in malt, which could possibly lead to an increase in the content of these phenolic acids in beer [92]. During bread making, the content of total phenolic acids and the ferulic acid dehydrodimers was significantly lower in imitated sour dough, dough after mixing, dough after proofing and bread crumbs [86]. Steaming and flaking of dehulled oat groats vielded moderate losses of caffeic acid, while ferulic and vanillic acid increased. Drum drying of steamed rolled oat caused a large decrease in total cinnamic acids [87].

Sinapine, a main phenolic compound of white mustard seed, changed during the traditional stir-baked processing, especially after 15 min, whereby *p*-hydroxybenzoic acid was formed [96]. The content of vanillic acid in Colombian Arabica coffee beans increased in medium- and darkroasted samples [97]. Storage at 40°C of roselle (*H. Sabdariffa* L.) extract decreased the phenolic compound only by a few percent. After drying and storage at 20°C for 15 wk, 90% of total phenolic compounds remained [102]. In yam Florido (*Discorea alata*), ferulic acid disappeared more slowly when blanching was performed at 60°C than at 65, 70 or 75°C [101]. Artichokes (*Cynara scolymus* L.) were packed in six different films and stored for 8 days at 5°C. After storage, the internal head portion contained more phenolic acid compared to harvest [100].

# 2.5 Summary: Phenolic acids (hydroxycinnamic and hydroxybenzoic acids)

The relevant sources of hydroxycinnamic and hydroxybenzoic acids (phenolic acids) comprise fruits (apples and apple juice, cherries, berries), vegetables (broccoli, lettuce, tomatoes), legumes seeds, cereal grains and their products, wine and coffee beans. The storage process modifies the content of phenolic acids in the plant material; a loss of these compounds as well as an increase in their content was observed. Storage temperature is the major factor contributing to these changes in phenolic acid content. Soaking decreased the content of phenolic acids in legume seeds. The germinated leguminous seeds exhibited changes in content of some phenolic acids. During bread making, oat steaming and flaking, losses of phenolic acids were observed. Freeze-drying did not affect the content of phenolic acids in strawberries. Thermal and SO<sub>2</sub> treatment of blueberries did not result in a change in the content of phenolic acids in pressed juice.

### 3 Chalcones

The structure of chalcones is given in Fig. 2.

**Figure 2.** Structure of chalcones and basic structure and numbering system of flavonoids. Figure has kindly been provided by Rainer Cermak [1].

#### 3.1 Biosynthesis

Chalcones are key compounds in the biosynthetic pathway of flavonoids. Naringenin is formed by a cyclization of a tetrahydroxychalcon (= chalconnaringenin) which contains a  $C_6$ – $C_3$ – $C_6$  skeleton. This cyclization tendency which could be promoted as a result of an improper sample preparation is the reason why this compound could not be documented earlier. Nevertheless, the cyclization of xanthohumol (only existing in hop) yielding isoxanthohumol during beer brewing has a physiological importance.

### 3.2 Food sources

The following foods are sources of chalcones:

Apples and apple juice [13, 16, 39, 107–114], apple cider [112, 115], tomatoes [74, 116], rooibos tea [6, 117, 118], and orange juice [119].

There is no proof of chalcones in orange juice itself, its formation in the gastrointestinal tract will be described in detail.

# 3.3 Aspects of postharvest processing and storage procedures

The following list gives an enumeration of all the measures or procedures investigated:

Maturity, ripening and time of harvest [74, 115, 116], storage and ageing under different conditions [46, 107, 109, 113], fermentative tea production [6, 117], juice production [13, 39, 111–113], differentiation in fractions [13, 107–109, 114, 115, 118], peeling [13, 107–109, 114], special pressing or extraction [39, 112], freezing [47, 110], enzymatic treatment and maceration [39, 111], and effects of high temperature and oxygen [113].

The observed effects of some of these will be discussed with reference to their application in given foodstuffs in the following sections.

# 3.4 Structures of individual compounds, content and changes in content in foods

There are known only few structural different compounds of this class of substances in foods. Chalcones, dihydrochalcones and also glycosylated and prenylated structures of the aglycones are specific to this type of compound. The quantitative values are based on HPLC analysis (if no other methods are mentioned).

Glucosylated dihydrochalcones aspalathin and nothofagin are found in particular in rooibos tea but do not occur in all populations [117]. In unfermented plant material, the content ranges from 4 to 12% for aspalathin to 1% for nothofagin. In fermented products however, the contents are much lower (to 0.1-0.2%) [6]. Reports in [118] indicated that, depending on the extraction conditions, aspalathin concentrations of up to 13 mg/L in the drink had been observed.

The aglycones, found in apples and apple juice, are the dihydrochalcones phloretin and hydroxyphloretin [108, 115] and the corresponding glucosides, arabinosides [108] and xyloglucosides. Free aglycones were not detected. As usual, content is strongly dependent on variety and the yearly agronomical conditions (*e.g.* weather) prior to harvest. The distribution in the fruit follows the same pattern: the highest concentration was found in the peel, lower concentrations in the flesh and least of all in the apple juice. For example, in the dessert apple Red Delicious [13] amounts of up to 250 mg/kg were determined in the peel, 30 mg/kg in the flesh and up to 20 mg/L in the juice. However, higher concentrations were found in cider apples [112, 115] than

in dessert apples. Due to the fact that some compounds are sometimes fixed to flesh components, cloudy juice contains more dihydrochalcon glycosides than clear apple juice [112]. Freshly home pressed juice showed a higher content than commercial varieties [112]. Storage of up to 4 months at 4 or 20°C led to no considerable changes in the content of glycosides while in other phenolic compounds drastic changes were observable. The same is true in the case of enzymatic mash treatment of cloudy apple juice. Nonetheless, the use of high temperatures (80°C) and a high oxygen supply does result in a significant reduction [113].

In tomatoes, only chalconnaringenin was detected and two references were found, [74, 116] for cherry tomatoes from greenhouse production. Seasonal variations are between 100 and 300 mg/kg in fruits harvested with a ripening orange-yellow colour. Postharvest ripening at increasing temperatures (4, 12 and  $20^{\circ}$ C, at a time for 1-3 wk) led to a strong reduction in content.

### 3.5 Summary: Chalcones

Very few applications deal with chalcones or structurally related compounds. The relevant sources of chalcones are apples, apple juices, tomatoes and roiboos tea. Dihydrochalcones are found in apples and chalconnaringenin in tomatoes. The great tendency of cyclization of the tetrahydroxychalcon (= chalconnaringenin) partly leads to the flavanone aglycon naringenin in common products of tomatoes. Dihydrochalcones in apple and apple juices are more stable. Cloudy juice contains more dihydrochalcon glycosides than clear apple juice and freshly home-pressed juice more than commercially produced juice. Storage at moderate temperatures produced no considerable changes in the content of glycosides but the use of high temperatures led to a clear reduction. The most important prenylated chalcon is currently xanthohumol which occurs in very small amounts only in hops. Maybe the cyclization to isoxanthohumol during beer brewing has a nutritive physiological importance which is mentioned in some papers but not really proofed.

#### 4 Flavanones

The structure of flavanones is given in Fig. 3.

### 4.1 Biosynthesis

Chalcone synthase catalyses the stepwise condensation of three acetate residues from malonyl CoA with *p*-coumaryl CoA. The *p*-coumaryl CoA is supplied from the phenyl-propanoid pathway. The formed naringenin chalcone is then converted into a flavanone form by an intramolecular reaction in which the C-ring is closed by the enzyme chalcone isomerase. Flavanone is probably modified in a stepwise manner to the various derivatives by hydroxylation,

#### **Flavanones**

Naringenin: 5,7,4' = OH

Hesperetin: 5,7,3' = OH; 4' = OCH<sub>3</sub>

**Figure 3.** Structure of flavanones. For basic structure and numbering system of flavonoids see Fig. 2. Figure has kindly been provided by Rainer Cermak [1].

methylation, glucosylation and the rhamnosylation. The enzymatically catalysed reaction of the S-isomer is often followed by a chemical reaction which leads to a racemate in ripe fruits.

#### 4.2 Food sources

The following list presents the food sources of flavanones and the papers in which they were discussed:

Oranges [5, 9, 66, 119–122], grapefruits [21, 123–127], mandarins [125], *Citrus bergamia* juice [128], tangelos [125], lemons [129, 130], pomelos [124], soybeans [99], and tomatoes [72].

# 4.3 Aspects of postharvest processing and storage procedures

The following list gives an enumeration of all the measures or procedures investigated:

Fruit maturation [130], harvest date [126], storage [5, 126, 127], cold storage [125], squeezing [5, 9], pasteurization [5, 9, 72, 120, 122], extraction [129], concentration [5], freezing [9, 122], freeze-drying [127], light treatment [99], debittering [123], and irradiation [126, 127].

The observed effects of some of these will be discussed with reference to their application in given foodstuffs in the following sections. Maturity of the fruits as well as treatment and storage conditions of the flavanone-containing foods may strongly influence the concentration of individual and total flavanones and also their absorption and anti-oxidant properties.

# 4.4 Structures of individual compounds, content and changes in content in foods

The major flavanones discussed in the relevant publications are the aglycones (hesperetin [9, 122, 124] and naringenin [9, 72, 99, 122, 124]), the rutinose glycosides (hesperidin [5, 9, 99, 119, 123–125, 129, 130], narirutin [5, 119, 123–127], eriocitrin [129, 130] and didymin [5, 125]) and the

neohesperidose glycosides (neohesperidin [124, 125], naringin [9, 99, 124–127] and poncirin [125, 127]).

The alterations in flavanone glycosides during cold storage (up to 12 or 15 days at 4°C) were determined in segments and juice made from grapefruits, mandarin-type fruits, tangelos and oranges [125]. A significant increase in total flavanones was observed in the fruit segments with storage period. The dominant flavonoid was hesperidin, followed by narirutin and didymin. In contrast, a diminution in total and individual flavanones was found in juices. Three neohesperidose glycosides, mainly naringin, were additionally present in the grapefruit juice. Their concentrations remained unchanged during the storage period. Antioxidant activity correlated with the ascorbic acid content rather than with flavanone glycoside concentration.

The levels of eriocitrin and hesperidin were analysed in leaves, stems and flowers as well as in flavedo, albedo and the pulp of lemons (Citrus limon) in dependence on fruit maturation [130]. The highest concentrations were found in albedo. The levels of hesperidin (major flavanone) increased from fruit set until the formation of immature fruits (30 days after anthesis) to 29–40% of the fruit dry weight. However, as the fruit grows to maturity, hesperidin levels decrease dramatically to 0.6-0.8% of the dry weight. On the other hand, the concentrations of eriocitrin increased with fruit maturity. The maximum level of this flavanone was only 0.6-0.8% of the dry weight in mature fruits. In another study, the content of flavonoids (mainly flavanones) and the antioxidative potential was determined in two varieties of lemon juice obtained by either squeezing or by means of two industrial systems [129]. The amount of flavonoids in both types of manufactured juice was at least double that of the hand-squeezed juice. Thus, the predominant flavonoids in juice of the variety 'Fina' were hesperidin (240–253 mg/L) and eriocitrin (approx. 200 mg/L) using industrial technology, whereas 104 mg/L hesperidin and 81 mg/L eriocitrin were found after squeezing.

The effects of harvest date, storage and low-dose irradiation on flavanones were investigated in grapefruits [126]. Fruits were treated with 0, 70, 200, 400 or 700 Gy and then stored under simulated storage conditions by subjecting the fruits to 10°C for 4 wk followed by 1 wk at 20°C with 90– 95% relative humidity. Irradiation and low-temperature storage affected the flavanone content of grapefruit. In general, the early season grapefruit exposed to low doses of irradiation (70 and 200 Gy) followed by storage had significantly higher naringin, narirutin and total flavanone concentrations. An increase in irradiation dose (400 and 700 Gy) resulted in a decrease in flavanones immediately after irradiation. Furthermore, irradiation had different effects on early and late harvested fruits. Total flavanone content in late season nonirradiated fruit was significantly higher than in irradiated fruit after 35 days of storage. Irradiation had no significant effect on the naringin content of late season grapefruit. In general, flavanone concentrations

increased with increasing irradiation dose even in the late season grapefruit, and storage had a positive effect on flavanone levels. Furthermore, the effect of irradiation (300 Gy), storage and freeze-drying on flavanones was determined in grapefruit juice [127]. Interaction between irradiation and storage was observed for the naringin content. In nonirradiated control fruits, the naringin content was 42% higher on day 4 after harvest and decreased then again to the levels of harvest (day 0). After freeze-drying, no changes were found. Storage (6 days) of irradiated grapefruits induced de novo synthesis of naringin. This effect was also observed for narirutin and poncerin. In another study, clarified, debittered grapefruit juice was produced by membrane filtration, debittering using an XAD-16 adsorption column and an evaporation process [123]. During this process, more than 78% of the bitterness was removed. Concentration of naringin was reduced from 576 to 2.7 mg/kg. Also some nonbitter flavanones (narirutin, hesperidin) were nearly completely removed.

The main bioactive compounds (flavonoids, carotenoids and vitamin C) were determined in commercial orange juice and in freshly squeezed orange juice [9]. The commercial juices were produced by traditional pasteurization, by short-time pasteurization (for storage at  $0-6^{\circ}$ C) and by freezing without pasteurization. The highest total flavanone levels were found after traditional pasteurization (123-137 mg/L). The juice prepared by freezing had the lowest total flavanone concentration (36 mg/L). Concentrations of naringenin were between 20 and 37 mg/L (with the exception of frozen juice with 5 mg/L). Hesperidin was highest after traditional pasteurization (approx. 100 mg/L) and lowest after freezing (31 mg/L). Total vitamin C was found to be the major contributor to the antioxidant potential of the orange juices studied, followed by the flavonoids and carotenoids. The influence of high pressure, pulsed electric fields and traditional thermal processing (low pasteurization, high pasteurization, high pasteurization plus freezing and freezing) on bioactive compounds and antioxidant activity was investigated in orange juice [122]. High pressure treatment led to a 20% increase of the naringenin content and a 40% increase of the hesperetin content. Pulsed electric fields had no influence on flavanone content. On the other hand, pasteurization and freezing processes led to a diminished naringenin concentration (16.0%) whereas the hesperetin content was not modified. Total flavanone content was highest in orange juices after the high-pressure treatment (187 mg/L) and lowest after freezing (125 mg/L). High pressure and pulsed electric field technologies were most effective in preserving bioactive substances.

The phenolic compounds were evaluated in orange juices manufactured by squeezing, mild pasteurization, standard pasteurization, concentration and freezing as well as by domestic squeezing [5]. The whole orange juice was divided into insoluble and soluble fractions after centrifugation. Commercially squeezed juice provided 22% more

flavanones than home squeezed juice, where the cloud fraction was strongly increased. Particularly, the higher increases belong to hesperidin and didymin, with 30 and 27% increases, respectively, compared to the flavanones extracted by domestic squeezing. The hesperidin content was four-fold higher in commercial samples. Mild and standard pasteurization did not influence the flavanone content in both fractions. After the concentration process of orange juice, didymin decreased by 52% and the other flavanones decreased slightly in the soluble fraction. The cloud fraction was two-fold higher in narirutin, hesperidin and didymin after concentration. The freezing process caused a dramatic decrease in all flavanones in the soluble fraction (23-43%). Freezing and one month storage favours the precipitation of the flavanones to the cloud fraction. Juice pasteurization techniques did not modify the nutritional and antioxidant content of orange juice. However, pulp pasteurization is a restrictive technique that could influence the final content of phenolic compounds. Orange juices made from concentrated and frozen juices provided lower phenolic content than the initial juices. After in vitro gastrointestinal digestion of these orange juices, the flavanones able to permeate through a dialysis membrane, and those remaining in the retentate as well as those present in the insoluble fraction were determined [119]. In all juices, a high content of precipitated chalcones (approx. 70% of the total flavanones) was formed under the prevailing physiological conditions. Handsqueezing led to a higher concentration of flavanones in the permeated fraction and a lower transformation to chalcones than industrial squeezing. Although hesperidin was the most abundant flavanone in all fractions, narirutin and didymin permeated at higher rates. Pasteurization did not influence the solubility and permeability of the flavanones and chalcones, whereas industrial concentration decreased the chalcone formation. Juices made from frozen orange juice contained smaller amounts of soluble flavanones and insoluble chalcones.

The levels of total and individual flavanones (narirutin, naringin, hesperidin, neohesperidin, naringenin, hesperetin) were determined in grapefruits, oranges, pomelos and tangerines commonly consumed in Hawaii [124]. Concentrations of citrus flavanones ranged from 172 to 905 mg/kg. Naringin predominated in grapefruits while hesperidin was highest in oranges. Whether or not flavanone glycosides are less susceptible to degradation during storage was discussed. Storage and processing, especially when heat was applied, generally led to significant flavonoid losses.

The effects of three different methods of processing fresh tomatoes into tomato sauce were analysed with respect to the main flavonoids as well as to antioxidant properties [72]. The methods were: hot break processing at 90°C, cold break processing at 65°C and super cold break processing at 65°C under vacuum. Besides hydroxycinnamates, chlorogenic acid and rutin, naringenin was determined.

Naringenin was strongly affected by processing. Its concentration dropped by about 90% using all three methods.

Finally, phenolic compounds were determined in soybean seeds and sprouts grown under both dark and light conditions [99]. Besides other phenolic compounds, naringin, hesperidin and naringenin were found in the seven cultivars used. Despite high variability, more flavanones appeared in sprouts of most green cultivars grown under light conditions.

# 4.5 Summary: Flavanones

The most relevant sources of flavanones are citrus fruits (especially oranges and grapefruits) and their products. Hesperidin and naringenin are typical flavanones in citrus fruits. The maturity of the fruits as well as their treatment and storage conditions may strongly affect in different manner the concentration of individual and total flavanones and also their antioxidant properties and absorption as shown by several studies within the evaluated period. Thus, the flavanone content in orange juice is influenced by preparation method (*e.g.* squeezing, pasteurization, concentration and freezing).

### 5 Flavones

The structure of flavones is given in Fig. 4.

### **Flavones**

Baicalein: 5,6,7 = OH

**Figure 4.** Structure of flavones. For basic structure and numbering system of flavonoids see Fig. 2. Figure has kindly been provided by Rainer Cermak [1].

### 5.1 Biosynthesis

The basic chemical structure of flavones consists of two benzene rings linked through a heterocyclic pyrone ring. Their biosynthesis starts from cinnamic acid which, with the involvement of monooxygenase and cinnamate 4-hydrolase, is converted to *p*-coumaric acid. The latter, along with 4-coumaroyl/CoA ligase, is transformed to 4-coumaroyl coenzyme A. Condensation of one 4-coumaroyl coenzyme A molecule and three molecules of malonyl-CoA with chalcone synthase as catalyst yields the tetrahydrochalcone. The latter is transformed by Chalcone isomerase into (2S)-flavanone. In most cases, flavones are biosyn-

the sized from this compound with a membrane-bound cytochrome monoxygenase and flavone synthase II as catalyst.

### 5.2 Food sources

The following list presents the food sources of flavones and the papers in which they were discussed:

Grapefruits [124, 126], buckwheat [131], rooibos tea [117], artichokes [132], honey [133], parsley [134], olives [85, 134, 135], lemons [129, 130, 136], lettuce [137], pepper [137], chicory [137], wine [138, 139], grape juice [7], grapes [124], wheat [140], plums [124], peas [124], bamboo leaves [64, 141], oranges [5, 66, 124, 142], ponkan (mandarin-type) [143], tangerine essential oils [144], broccoli [145], hop [18], cabbage [124], and blueberries [124].

# 5.3 Aspects of postharvest processing and storage procedures

The following list gives an enumeration of all the measures or procedures investigated:

Grafting [136], time of harvest [130, 137], storage [146], maturity [130], wine ageing [147], geographical origin [144, 147], authentication [133], juice and nectar production [129], distribution in fruit [142, 143], thermal treatment [5, 148], cold-pressing of essential oils [144], extraction procedures [85, 142], and recovery from waste [85].

The observed effects of some of these will be discussed with reference to their application in given foodstuffs in the following sections.

# 5.4 Structures of individual compounds, content and changes in content in foods

More than 100 flavones have been identified in plants so far. Grafting of the tree rootstock is applied to improve the quality of fruit. The lemon juice obtained from grafted lemon-tree fruits had similar flavonoid content but the flavonoid composition had changed. Depending on the type of rootstock used the content of flavanone 6,8-di-C-glucosyl diosmetin was the most affected [136].

Since flavonoids are secondary metabolites in plants their quantitative and qualitative composition depends on the development stage of a plant, which means that by selecting the harvest time it is possible to obtain products with different flavonoid profiles. It was shown that when the *C. limon* fruits were harvested at the stage II of growth (immature fruit, 30 days after anthesis) they were an excellent source of flavanone hesperidin, but when picked at the stage III (mature fruit 150 days after anthesis) their flavone diosmin [130] content was greatest.

Harvesting time is also a source of flavonoid content variability. In Brazil, the content of flavones in leafy vegetables, like luteolin in lettuce and apigenin in chicory, was higher when vegetables were harvested in the second

semester of the year 2001 rather than in the first semester of the year 2002 [137].

Flavonoid composition of food products may also serve as a tool for food authentication. Profiles of flavonoids determined in Italian wines were shown to be related to the ageing of vineyards rather than to the geographical origin [147]. Similar analysis was suitable for authentication of unifloral Australian eucalyptus honey. The flavonoid profile was genus-specific and comprised tricetin, quercetin and luteolin and quercetin 3-methyl ether, which was proposed as a floral marker for this honey [133].

For obtaining lemon juices three processing methods are used. Simple squeezing of fruits and filtration, 'in line' extraction by squeezing of fruits incised in polar areas with subsequent separation of obtained pulp and juice or two stage extraction – first by means of two rollers turning in opposite directions and second by pressing in screw press and final mixing of the obtained juices. As a consequence, each processing method may have its own characteristics in terms of composition and juice quality [129].

The total flavonoid content of the juices obtained by manual extraction was less than half that obtained by mechanical extraction the percentage of flavones in the juices obtained manually was always lower than in the juices extracted using industrial methods which implies a possible greater contribution of flavones from albedo and flavedo. Indeed, in the mandarin type citrus fruit, ponkan (*Citrus reticulata*), polymethoxylated flavones like nobiletin, tangeretin and sinensetin were found, in decreasing order, in flavedo, albedo and segment membrane, while in juice sacs these compounds were not detected [143]. This is in agreement with the characteristics of flavonoids in the peel of citrus fruits which is rich in polymethoxylated-, C-glycosylated- and *O*-glycosylated flavones [142, 143].

The main processing steps in the production chain include two pasteurization techniques (mild and standard), juice concentration and/or freezing [5]. Pasteurization techniques did not influence the total phenolic content of orange juices. Similarly, no effect was noted in these compounds during juice concentration. In contrast, freezing resulted in dramatic loss in juice phenolics (-35%) which could be due to storage and thawing. In the monitored orange juices two flavones were found, vicenin 2 (apigenin 6,8-di-C-glucoside) and one luteolin derivative. There was a loss in the content of boths flavones during freezing (around 20%) while no changes were observed during pasteurization and concentrating. The mandarin type Dancy tangerine (Citrus tangerine Hort. Ex Tan.) cultivated in Mexico is the raw material for essential oil [144]. Analysis of industrially produced cold-pressed oils from Dancy tangerine from different regions of Mexico revealed the presence of five polymethoxylated flavonoids: tangeretin, hepta-methoxyflavone, nobiletin, tetra-O-methyl-scutellarein and sinensetin, with the first dominating. It is worth noting that the sample from the mountain region had the lowest polymethoxylated flavone content while the oil from the fruits from the tropical region had the highest.

By-products of fruit and vegetable processing are also an interesting source of bioactive compounds. The peel of Greek Navel oranges (*Citrus sinensis*) is considered to be a food additive of natural origin or a pharmaceutical supplement with antioxidative properties [142] because of its polymethoxylated flavones, *C*-glycosylated flavones and flavanones. With regard to the C-glycosylated flavones three compounds were identified, 6-C-β-glucosyldiosmin, 6,8-di-C-glucopyranosylapigenin and 6,8-di-C-β-glucosyldiosmin.

Olive processing also generates waste which can be utilized as a source of bioactive phytochemicals for food and pharmaceutical applications [85]. Different solvent combinations were tested and extraction at ambient temperature was found to provide a compromise between recovery of phenols and their degradation. Identification of the obtained extract revealed the presence of two compounds belonging to the group of flavonoids, namely flavonol glycoside rutin and flavone luteolin.

### 5.5 Summary: Flavones

Flavones are one of the principal classes of flavonoids and more than 100 flavones have been identified in plants so far. Citrus fruits, parsley, lettuce, chicory and grapes are the richest source of flavones in the human diet. Since flavonoids are secondary metabolites in plants, their quantitative and qualitative composition depends on the developing stage of a plant, which means that by selecting the harvest time it is possible to obtain products with different flavonoid profiles. Also other agronomical treatments (such as grafting) are a source of flavone content variability. The total flavonoid content in citrus juices obtained by squeezing was less than half that obtained by industrial methods, the percentage of flavones in the juices obtained manually was always lower than in the juices extracted by industrial methods which implies a possible greater contribution of flavones from albedo and flavedo. Recognition of flavone distribution within a plant/fruit permits a range of products with different flavone characteristics to be obtained from a single source.

### 6 Flavonols

The structure of flavonols is given in Fig. 5.

### 6.1 Biosynthesis

Hydroxylation of flavanones on C3 generates hydroxyflavonols, the direct precursors of flavonols.

#### **Flavonols**

Kaempferol: 5,7,4' = OHQuercetin: 5,7,3',4' = OH

**Figure 5.** Structure of flavonols. For basic structure and numbering system of flavonoids see Fig. 2. Figure has kindly been provided by Rainer Cermak [1].

### 6.2 Food source

The following list presents the food sources of flavonols and the papers in which they were discussed:

Plums [12, 124, 149–152], apples [13, 41, 107–110, 112, 114, 115, 124], onions [124, 137, 153–161], blueberries [14, 29, 58, 96, 124], cranberries [162, 163], currants [164, 165], blackberries [13], raspberries [4], chicory [137, 166], grapes [2, 13, 124, 167–169], wine [2, 49, 51, 53, 54, 139, 147, 170–173], tomatoes [72, 74, 116, 124, 157, 174], strawberries [8, 13, 63, 64, 124, 158, 175–177], buckwheat [131, 178], sorghum [88], potatoes [76, 124], mangos [124, 179, 180], kernels [138], cherries [13, 42, 43, 181], spinach [124, 156, 182], kale [183], broccoli [124, 145], cabbage [55], asparagus [156], lettuces [124], oranges [124], arugulas [137], tea [184], artichokes [132], coffee [185], honey [133, 186], apricots [187], citrus fruits [136], oranges [142], bush butter fruits [188], radishes [156, 189], cabbages [156, 124], pepper [156], olive oil [85, 190], cowpeas [104], cactus pears [191], Kancolla seeds [192], Pinto beans [193], beans [82], soybeans [99], and lentils [82].

# 6.3 Aspects of postharvest processing and storage procedures

The following list gives an enumeration of all the measures or procedures investigated:

Maturity, ripening and time of harvest [63, 74, 82, 99, 115, 116, 176, 178, 179, 188, 189, 194], storage and ageing under different conditions [2, 4, 14, 41–43, 49, 53, 76, 149, 152, 153, 169, 170, 173, 181, 185, 189, 193, 195], fermentation [2, 51, 55, 61, 104, 139, 168, 172, 173, 184], juice production [2, 58, 112, 142, 162, 181, 191, 196], differentiation in fractions [114, 167, 174], peeling [109, 142, 153, 180], special pressing or extraction [2, 64, 72, 165], enzymatic treatment and maceration [51], irradiation [53, 158, 175, 183], drying [8, 102, 132, 152, 159], sensory effects [51], germination [88], browning-blanching and polyphenoloxidase (PPO) activity [124], proveniences [8, 12, 63, 107, 110, 112, 133, 138, 145, 147, 150, 151, 156, 164, 180, 186, 187, 194], and cooking [76, 160, 166, 182, 190].

The observed effects of some of these will be discussed with reference to their application in given foodstuffs in the following sections.

# 6.4 Structures of individual compounds, content and changes in content in foods

The flavonol distribution, typical for each species (as for total flavonoids), is due to intrinsic and extrinsic factors. Some are related to the existence of synthesis and regulation pathways controlled by enzymes, others are connected to habitat (such as season and climate conditions) and degradation caused by human activities (such as degree of ripeness, cultural practices, food preparation and processing).

Peeling, skinning, trimming, depitting and/or leaf selection may cause a partial or total decrease in flavonol levels: data obtained, analysing the flavonol content in the different layers of onion bulbs (skins, outer fleshy layer, edible portion), show that, after normal household peeling, 79% of the total content of quercetin 4'-glucoside is still present in the edible portion [153].

Quercetin-3-rutinoside, kaempferol-3-rhamnosyl-hexoside and quercetin-3-acetyl-hexoside were found only in the peel tissue of apricots from different cultivars [187]. Small amounts of kaempferol ( $27 \pm 2 \mu g/kg$  edible fruit pulp) occur only in the pulp of the cactus pear [191].

The flavonols, found in fruits and vegetables, are present in glycosylated form, mainly as O- $\beta$ -glycoside with a sugar moiety at the C-3 position. The number and type of sugar residues is diverse. Flavonol glycosylation does increase the solubility promoting their accumulation in plant cell vacuoles.

Quercetin-3-arabinoside was found in both furanose and pyranose forms in cranberries [163]. The quantification and the screening of mango flavonol glycosides could be used as a control parameter for mango puree concentrate production [180].

The exposition to light stimulates the flavonol biosynthesis in a few plant organs causing them to collect in the outer and aerial tissues (skin and leaves). A strong divergence between the flavonol values obtained for apple peel and pulp was noticed: quercitrin  $(94.0 \pm 36.0 \text{ vs. } 7.76 \pm 1.95 \text{ mg/kg} \text{ FW})$ , reynoutrin  $(48.9 \pm 16.2 \text{ vs. } 1.98 \pm 0.50 \text{ mg/kg FW})$ , avicularin  $(110 \pm 32.9 \text{ vs. } 2.27 \pm 0.46 \text{ mg/kg FW})$  [109].

Domestic cooking methods such as boiling, microwaving, frying and steam-cooking could cause a loss of the flavonols in potatoes [76]. Onions (*Allium cepa* L.) have been prepared by sautéing, baking and boiling: after baking and sautéing, quercetin concentrations increased by 7–25%, while boiling led to a decrease of 18% [160]. Quercetin derivatives such as quercetin-3,4′-glucoside and quercetin-4′-glucoside are not deglucosylated during cooking. In addition, more than 50% of flavonoids and other soluble plant materials are readily transferred from onions into soup during cooking [155].

A loss in flavonol content was observed in several vegetables and fruits during boiling and blanching [124]. Quercetin and kaempferol glycoside levels do not change in fresh or frozen, store-bought or home-grown red raspberries [4].

A lot of investigations were conducted on the influence of processing procedures and techniques on food, especially juice processing and vinification. Very low concentrations (0.4–4 mg/L) of quercetin derivatives in dessert apple juice have been found, while in cider apple juice quercetin glycosides reached concentrations of up to 27 mg/L. No free quercetin was found in the apple juice [112]. In blueberry juice produced by three different types of treatment (initial heat treatment, SO<sub>2</sub> and no treatment), polyphenolic levels remain similar [58].

Myricetin, quercetin, kaempferol and isorhamnetin as 3-O-glycosides were found in Vitis vinifera grapes. In addition, the presence of their aglycone forms in wine shows that processes such as vinification, maturation and/or aging of wine stimulate the hydrolysis of the glycosides [171]. The higher flavonol content in enzyme-treated wines seemed to be connected to the higher degradation of pulp caused by the enzymes [51]. In [197], it have carried out an investigation on the production of juice and wine through hot- and cold-pressed techniques, and on the production of wine following on-hull fermentation for 3, 5 and 7 days. The results obtained from the comparison between hotpressed juice and on-hull fermentation wine showed a decrease in myricetin, quercetin and kaempferol levels during storage at a rate consistent with temperature. The loss was 45-63% at  $20^{\circ}$ C and 75-79% at  $37^{\circ}$ C, depending on processing method.

Reports in [72] have described the influence of three different processing methods, hot break, cold break and super cold break on the flavonol concentration in an Italian tomato variety: rutin concentration, the main flavonol identified, after the cold break process, increased from  $154.47 \pm 19.8$  to  $239.81 \pm 19.8$  mg/kg dry weight.

Kaempferol has been identified as the principal flavonol in the dried aerial parts of tea (*Sideritis euboea*) [183]. The major flavonol that occurred in Pu-er tea (a treated fermented tea produced from crude green tea prepared from the leaves of *Camellia sinensis*) is myricetin [184].

The influence of storage on the flavonol content of foods is ambiguous. Analysis of cherry juice from five different cultivars revealed the presence of quercetin glycosides at concentrations of 31–109 mg/L. No variations were found after 180 days of storage at 20°C [181]. Storage at 22°C for 36 wk increased the total phenolic concentration in red and yellow onions [154]. Cold storage for up to 3 days led to relatively small changes in the concentration of the different antioxidants in strawberries [63].

#### 6.5 Summary: Flavonols

The relevant sources of flavonols for human nutrition are plums, apples, onions and blueberries. The main representative molecules are quercetin and kaempferol. Peeling, skinning, trimming, depitting and/or leaf selection may cause a partial or total decrease in flavonol levels. Changes were found also in flavonol levels with different cooking methods. The influence of food storage on the flavonol content of foods is ambiguous: increases, decreases and no change have been observed depending on the storage conditions, phytochemical stability characteristics and quality of the food analysed. A lot of investigations have focused on the influence of processing procedures and techniques on food, especially juice processing and vinification. Vinification, maturation and/or aging of wine were found to stimulate the hydrolysis of the glycosides.

### 7 Monomeric flavanols (catechins)

The structure of monomeric flavanols is given in Fig. 6.

#### Flavanols

Epicatechin: 5,7,3',4' = OH; R = H Epigallocatechin: 5,7,3',4',5' = OH; R = H Epicatechin-3-gallate: 5,7,3',4' = OH; R = gallate Epigallocatechin-3-gallate: 5,7,3',4',5' = OH; R = gallate

**Figure 6.** Structure of monomeric flavanols. For basic structure and numbering system of flavonoids see Fig. 2. Figure has kindly been provided by Rainer Cermak [1].

# 7.1 Biosynthesis

During the biosynthesis of the monomeric flavanols (catechins) there is a strong relation between the monomer catechins and the resultant proanthocyanidin oligomers. They nearly always occur together in plants. Proanthocyanidin oligomers do have special properties. Consequently there is another paper dealing with them within this issue [198].

Normally, stereo specific (+)-catechin and (-)-epicatechin are synthesized in nature. However, newer chiral analysis show that in some cases, their enantiomers could have also been either naturally formed (e.g. in guarana) or formed during processing (e.g. in chocolate).

# 7.2 Food sources

The following list presents the food sources of catechins and the papers in which they were discussed:

Grapes, grape juice and grape seeds [7, 15, 17, 52, 121, 167, 197, 199, 200–207], wine and winery by-products [15, 17, 51, 52, 119, 201, 203, 208–211], tea leaves and tea [204, 207, 212–215], Pu-er tea [184, 216], apples [11, 41, 137, 197, 217], cocoa [21, 218], coffee [185], cherries and cherry juice [42, 43, 181, 197], acerola juice [219], pears [45], strawberries [175], yams and potatoes [101, 220], common beans [221], lentils [222], wheat fractions [19], corn, chips and tortillas [223], hawthorn leaves [224], *Crataegus pinnatifida* fruits [225], pale malt [226], shea kernels and shea butter [138], fruits, vegetables, beans, nuts and cereals [227], vegetables, spices and dressings [33], and *Argania spinosa* oil and press cake [103].

The following publications are also overviews: [201] (88 foods), [197] (28 fruits) and [137] (Brazilian vegetables and fruits). In [228], an addition of epicatechin to bovine milk is described.

# 7.3 Aspects of postharvest processing and storage procedures

The following list gives an enumeration of all the measures or procedures investigated:

Maturity, ripening and time of harvest [15, 41, 42, 137, 181, 210, 219], storage and ageing under different conditions [15, 41–43, 52, 181, 185, 209, 211, 229, 230], fermentation [7, 15, 17, 51, 52, 184, 185, 199, 203, 209–213, 216, 230, 231], juice production [7, 181, 219], differentiation in fractions [19, 137, 167, 199, 217, 221, 222], peeling [17, 137, 167, 199, 217], special pressing or extraction [51, 203, 204, 231], enzymatic treatment and maceration [7, 51, 211], irradiation [175, 214], acidification [223], 1-methyl-cyclopropene (MCP) treatment [41], drying [45, 101, 213, 225], sensory effects [232, 233], brewing [131, 215], cooking and steaming [33], stress treatment [224], browning-blanching and PPO activity [101], and provenience [138].

The observed effects of some of these will be discussed with reference to their application in given foodstuffs in the following sections.

# 7.4 Structures of individual compounds, content and changes in content in foods

For the determination and judgement of the monomeric flavanol content attention must be paid to its formation from or transformation into proanthocyanidins (see Section 7.1). The quantitative values are based on HPLC analysis (if no other methods are mentioned). Different standards are sometimes used as base for the quantitative analysis of the same substances in different publications. It can be necessary, *e.g.* if single compounds are not available. That means that results can only be partially considered as absolute values.

All related publications contain information on the content of catechin and epicatechin. Furthermore, gallocate-

chin, epigallocatechin, catechinglucoside [222], epigallocatechinglucoside [184], gallocatechin gallate [138], epigallocatechin gallate [138] and epicatechin gallate [203, 206, 231] are mentioned. In [184], new 8-C substituted flavanols (puerins) are described. New oxidation products of catechin and epicatechin (viniferones) have been identified [205]. The catechin contents given in [19, 197, 210, 217] have been determined by unspecific colour reactions, such as Folin-Ciocalteu assay.

All the relevant publications show that content is strongly dependent on variety and the yearly agronomical conditions prior to harvest. The distribution in the fruit also follows the normal pattern: the highest concentration was found in the peel, lower concentrations in the flesh and even less in the juice.

In grapes and the corresponding wines, the content is influenced by fermentation: in [199], up to 30 mg/L of monomeric catechins in wine, 140 mg/kg in the skins and 1500 mg/kg in the seeds are reported. Grape seeds and winery by-products are recognized as good sources of flavanols. In [203], hot extractions are described, in [231], extractions with supercritical liquids and/or extractions under high pressure and modified temperature. The use of subcritical water extraction [231] partially gave better results than mixtures of methanol and water.

Different cultivars of cherries [42, 43] with greatly varying catechin content were investigated under cold storage (2°C) and room temperature (15°C) conditions. In juice, a decrease at 15°C was observed. Ripe apples treated with MCP [41] and stored at different temperatures and time periods showed no significant variations in catechin concentration. In immature and mature acerola juice [219], a decrease in total polyphenols (calculated as catechin) was found (3800–2400 mg/kg). In strawberries [175], the content of catechin and especially of epicatechin was markedly reduced by irradiation whereas the concentration of flavonols (quercetin derivatives) was not affected.

In two cultivars of yams, the effect of blanching at different temperatures was investigated. Catechin was found to decrease during blanching, independent of temperature. No epicatechin was detected in yams or potatoes [101, 220]. The production of chips and tortillas from white and blue corn resulted in big losses of total polyphenols [223]. In [232], the addition of epicatechin to bovine milk is described. Epicatechin inhibited the thermal development of aroma compounds in ultrahigh-temperature processing of milk.

### 7.5 Summary: Monomeric flavanols (catechins)

Important sources of catechins for human nutrition include tea, grapes, red wine, cocoa and chocolate. The most common flavanol monomers are catechin and epi(gallo)catechin and their gallates (in tea). The catechins are widespread in the plant kingdom and there is a strong relationship between the monomeric catechins and the resultant proanthocyanidin oligomers. They nearly always occur together in plants. Due to the large number of references dealing with the oligomers, the proanthocyanidins will be discussed in a further overview of the COST action 926 [198].

Normally, (+)-catechin and (-)-epicatechin are synthesized in nature. However, more recent chiral analyses show that in some cases, their enantiomers could have also been either naturally formed (e.g. in guarana) or formed through technological treatment (e.g. in chocolate). It has been supposed that the bioavailability of (-)-catechin was not as good as that of (+)-catechin.

Flavanols are good substrates for the PPO, therefore they are often decreased by this reaction. On the other hand, fermentation of grapes increases the content in their resultant wines. It is known that grape seeds and winery by-products are good sources of flavanols (see also in the section of proanthocyanidins). Different effects of storage (time and temperature) were observed with different fruits and their products. In general high temperature decreases the content. In strawberries, the catechin content, in particular epicatechin, was markedly reduced by irradiation whereas the concentration of quercetin derivatives was not affected.

## 8 Anthocyanins

The structure of anthocyanins is given in Fig. 7.

### **Anthocyanidins**

Delphinidin: 5,7,3',4',5' = OH Malvidin: 5,7,4' = OH; 3',5' = OCH<sub>3</sub>

**Figure 7.** Structure of anthocyanins. For basic structure and numbering system of flavonoids see Fig. 2. Figure has kindly been provided by Rainer Cermak [1].

### 8.1 Biosynthesis

The  $C_6-C_3-C_6$  skeleton is formed involving the polyketide and shikimate pathways yielding flavanones as the first products of flavonoid biosynthesis. Subsequently, these are converted to dihydroflavonols which serve as educts for the formation of leucoanthocyanidins (flavan-3,4-diols, intermediate product) and anthocyanins, respectively. Several hundred anthocyanin structures are known which result from substitution of the anthocyanidins with hydroxyl and methoxy functions at various stages of the flavonoid biosynthesis. Finally, the aglycones are glycosylated with sac-

charide moieties, such as glucose, galactose, xylose, arabinose and rhamnose, but also with di- and triglycosides. In many cases, the saccharide moieties are acylated with aliphatic or aromatic acids, substitution with the latter giving rise to enhanced pigment stability due to intramolecular copigmentation of, *e.g.* red cabbage, black carrot, red radish and red and purple potato anthocyanins [234–236]. In addition, complex reactions of anthocyanins during food processing and storage, *e.g.* during wine aging, lead to a vast number of novel compounds, the structure and content of which, in processed foods, are still largely unknown [207].

### 8.2 Food sources

The following list presents the food sources of anthocyanins and the papers in which they were discussed:

Grapes and red wine [2, 15, 49, 51, 52, 54, 58, 64, 121, 122, 168, 171-173, 207-209, 211, 230, 237-270], strawberries and strawberry jam [158, 271-278], prunes [152, 279], cherries and cherry juices [23, 42, 43, 181], plums and plum purée [228, 262, 280], pomegranates and pomegranate juice [281–284], mangos [180, 285], red oranges [286–289], cherry laurel [44], mulberries [290, 291], apples and apple juice [39, 41, 108, 113, 114, 196, 217, 292], litchis [293–296], raspberries [4, 275, 297, 298], blackberries [298-301], black chokeberries [302], blueberries and blueberry juice [14, 58–60, 106, 275, 303, 304], black currants [165, 305-309], bilberries [300, 307], cranberries [310, 311], bayberries [65], berries of Ribes species [164], Annona cherimola fruit [312], black carrots and black carrot juice [235, 313–315], red and purple potatoes [236], corn kernels [223], asparagus [316], roselles [102, 317], olives [318, 319], red onions [153], kidney beans [320], snowball tree fruits [321], sweet potatoes [322], sorghum [88], fruits, vegetables, beans, nuts, cereals and foods [227, 323], and Indian diet [324].

# 8.3 Aspects of postharvest processing and storage procedures

Anthocyanin stability and changes in the anthocyanin profile have been investigated using a number of different conditions and treatments during storage and postharvest processing:

Winemaking, wine aging and storage [2, 49, 51, 54, 122, 171, 173, 207–209, 211, 230, 238, 241, 243, 246, 248, 252–254, 257–260, 264–270], maturity stage and post-harvest ripening [15, 42, 266, 277, 279, 301, 303], freezing and cold storage [4, 23, 43, 113, 237, 247, 251, 274, 279, 281, 289, 295, 297, 299, 303, 325], thermal treatment and storage at increased temperatures [44, 59, 102, 223, 228, 244, 276, 286, 291, 293, 305, 306, 313–316], comminution and pressing techniques [304], clarification, filtration and concentration [58, 65, 283], juice production [324], enzymatic treatment [264, 280, 307], peeling [153], extraction

[21, 121], drying [102, 152, 178, 249, 303, 326], fermentation [254, 276, 304], storage [272, 287], pre- and postharvest dip treatment or spraying [273, 281, 292–295, 311], MCP treatment [23, 41], germination [88], postharvest UV irradiation [158, 250, 284, 308], controlled and modified atmosphere (MA) storage [14, 296, 310, 312, 318, 319], anthocyanin structure [234–236], and copigmentation effects [52, 172, 240, 256, 261, 327].

The observed effects of some of these will be discussed with reference to their application in given foodstuffs in the following sections.

# 8.4 Structures of individual compounds, content and changes in content in foods

Among the flavonoids, anthocyanins are the most important class of phenolic compounds and have thus been intensively studied with special regard to their techno-functional and biofunctional properties. For this reason, almost every third paper evaluated in this review deals with anthocyanins, either exclusively or in combination with further phenolic compounds.

In order to improve storage behaviour and to maintain quality attributes, fruit and vegetables should be harvested at optimum maturity. Strawberries, which are harvested at their colour break or half-coloured status, will redden during storage, but their pigment content will remain below that of strawberries ripened on the field and harvested at commercial maturity as has been shown for the major strawberry anthocyanins, pelargonidin 3-glucoside and cyanidin 3-glucoside. Thus, colour development during postharvest ripening is significantly affected by the initial pigment content [277]. Even fruits harvested at commercial maturity may exhibit increases in anthocyanin content throughout cold-temperature storage. The amount of pigment in prunes increased 1.5–1.7-fold during storage at 1 and 5°C, respectively [279], and an up to five-fold increase in the pigment content of cherries stored at  $15 \pm 5^{\circ}$ C was observed. Higher temperatures enhanced anthocyanin biosynthesis during storage [42]. The change in the content of individual phenolics of various cherry cultivars during storage also affected in vitro antioxidant effects on human lowdensity lipoproteins [43]. Furthermore, the choice of suitable cultivars is of particular importance for storage. Jams produced from various strawberry cultivars differed in terms of pigment and antioxidant capacity retention. While temperature proved to be the most important factor during storage, significant differences between jams stored under light or in the dark were not observed [272].

The temperature during storage strongly affects the half-life values of anthocyanins in a fermented black carrot juice, which ranged from 231 to 239, 55 to 80 and 21 to 22 days, when the product was stored at 4, 25 and 40°C, respectively [313]. However, the stability of individual anthocyanins is not only dependent on their structure, but

also on matrix components which might reduce pigment degradation, such as colourless phenolic compounds. Black carrot extracts exhibited varying stabilities in fruit juices and nectars when stored at temperatures up to 37°C or heated at 70-90°C [314]. Cherry juices stored at 20°C in the dark showed a loss of 50% of their monomeric pigments after 180 days [181]. In contrast, the amounts of cyanidin galactoside in apple juices stored at 4 and 20°C, remained virtually unchanged for a period of up to 30 days [113]. The loss of monomeric anthocyanins during seven months of storage in the dark was up to 88% for conventional red wine and 91% for ecological red wine [49], and even higher degradation rates may be observed in grape skin extracts [237]. The colour loss of a plum extract stored at 25°C for 138 days amounted to 21 and 23% at pH 1 and 3, respectively, while under the same conditions a grape extract showed colour losses of 30 and 31% [262].

There is increasing interest in the stability of individual phenolic compounds to provide processes and optimize conditions for maintaining polyphenol levels in plants or products derived thereof or minimizing loss of phenolics, e.g. by cold-temperature or frozen storage. The anthocyanin content of raspberries (mainly cyanidin glycosides and minor amounts of pelargonidin glycosides) was not affected by freezing. Furthermore, 3 days of storage at 4°C and at 18°C for 24 h had no significant effects on the levels of individual anthocyanins. Since anthocyanins were quantitatively predominant and further compounds showed only minor changes, these storage conditions did not affect the antioxidant capacity either [4]. These findings were corroborated for wild blackberries. Antiradical activity showed only a slight decrease throughout storage, and a correlation with anthocyanin and total phenol content could be established [299]. However, long-term storage at -18°C (12 months) and short-term storage with temperature fluctuations between -18 and -12°C (24 days) were shown to significantly affect raspberry surface colour in terms of L\*a\*b\* values. Interestingly, an increase in the total anthocyanin content was observed under the latter conditions [297]. In contrast, the loss of total anthocyanins in strawberry fruit amounted to  $40.2\% (-12^{\circ}C)$ ,  $34.3\% (-18^{\circ}C)$ and 17.6% ( $-24^{\circ}$ C), respectively, after 90 days of storage. The method of freezing is obviously important for pigment retention, since strawberries frozen quickly showed lower anthocyanin levels than samples frozen slowly [247].

The shelf-life extension of fresh fruit is usually achieved by low-temperature storage. Cold storage may be combined with postharvest dip treatments of fresh fruit, such as litchis, with chitosan or Carnauba wax to prolong shelf-life [295]. Blueberries could be stored up to 7 wk at 5°C; however, the storage period was cultivar-dependent. Anthocyanin content and antioxidant activity remained unchanged during storage. One cultivar, the berries of which were harvested before commercial maturity, even exhibited an increase in pigment amounts (1600%), total phenolic con-

tent (40%) and antioxidant activity (79%) during the first 3 wk of storage, which was only partially due to water loss [106]. Strawberry fruit stored at 0, 5 and 10°C, respectively, did not show temperature-dependent differences of surface colour, however, L\*a\*b\* values changed with storage time. In contrast, total anthocyanin content was significantly affected by the temperature and storage period, with fruit stored at 10°C actually exhibiting a gradual increase in pigment, while storage at 0°C caused pigment loss throughout the period of 91 days. Even though pigment retention was higher at 10°C, overall fruit quality was better maintained at 0°C [251]. Pigment loss in strawberries may amount to up to 43% during 8 days of storage at 1°C unless the fruit are wrapped to avoid water loss, which might have contributed to enhanced pigment breakdown along with oxidative mechanisms caused by increased PPO activities in unwrapped strawberries [274]. Pigment loss was also shown to be minimized by postharvest application of methyl jasmonate in combination with an ethanol treatment, because the anthocyanin content of the fruit exhibited a reduced downward trend when compared to the control fruit [273].

When cherries were stored at 2-4°C for 12 days without MCP treatment, no change in anthocyanin content was observed. In contrast, MCP-treated fruit exhibited a 9% decrease (360 µg/kg MCP) and a 12% increase (180 µg/kg MCP), respectively, after 12 days of cold storage [23]. Anthocyanin levels of pomegranate fruit stored at 5°C were shown to significantly increase during the first month of storage, probably due to continued pigment biosynthesis after harvest. Thereafter, a steady downward trend was observed, the extent of which was dependent on postharvest treatment of the fruit (spraying with wax and CaCl<sub>2</sub> solutions). Individual compounds (mainly cyanidin and delphinidin glycosides and minor amounts of pelargonidin glycosides) showed almost the same trend throughout storage [281]. Increasing anthocyanin content has also been observed for red oranges stored at 4°C. Pigment content was eight times higher than those of control fruit stored at 25°C. This was traced back to an enhanced expression of the structural genes involved in anthocyanin biosynthesis, such as PAL, chalcone synthase, dihydroflavonol 4-reductase and UDP-glucose flavonoid glucosyl transferase due to the cold stress [289]. In general, low temperature storage has been shown to enhance postharvest phenolic metabolism in a wide variety of plant matrices. There is a special low temperature below which the phenylpropanoid metabolism is stimulated; however this temperature varies from commodity to commodity [325].

Thermal treatment, such as blanching, pasteurization and sterilization, are the most common methods for preserving food, but has significant effects on the content of unstable compounds, such as anthocyanins. Blanching has been shown to increase anthocyanin yields during juice processing by inactivating deteriorating enzymes and increasing

fruit skin permeability [59]. Steam blanching and subsequent immersion into high-acid solutions have also been applied for the colour stabilization of litchi pericarp, since litchi anthocyanins are highly susceptible to rapid degradation after harvest [293].

The heating of black currant anthocyanins in aqueous solution revealed high pigment stability at 75°C (insignificant loss after 150 min) and a decrease in colour intensity at higher temperatures (20 and 45% decrease at 85 and 95°C) with cyanidin rutinoside being the most stable black currant pigment. Furthermore, the presence of high amounts of sucrose had positive effects on pigment stability during heating, whereas fructose showed the opposite effect [306]. Rather obsolete traditional processes, such as the production of pekmez from cherry laurel (Laurocerasus officinalis Roem.) by boiling the juice in copper containers over an open wooden fire, resulted in high losses of monomeric anthocyanins amounting to up to 92.5% [44]. The heating of mulberry extracts at 90°C gave rise to a rapid decrease in monomeric anthocyanins and a concomitant formation of polymeric pigments. This study also showed that high saccharide content has to be considered when solutions containing anthocyanins are thermally treated because of the formation of intermediates (such as furfural and hydroxymethylfurfural) and end products of the caramelization reaction which might interact with anthocyanins yielding an enhanced pigment loss [291].

Experiments performed with plum purée at 50-90°C showed first order reaction kinetics for anthocyanin degradation. The activation energy for anthocyanin breakdown was found to be 37.48 kJ/mol [232]. First-order kinetics of pigment decomposition was also shown for blood orange. Blood orange anthocyanins are highly susceptible to degradation at elevated temperatures. Half-lives ranged from 6.3 to 1.5 h for juice, 3.4 to 0.7 h for a concentrate of 45°Brix and 2.0 to 0.4 h for a concentrate of 69°Brix, respectively, with solutions of higher total soluble solid content showing higher relative pigment losses [286]. Nixtamalization, a particular form of food preparation common to Mesoamerican cultures, has also been shown to be detrimental to anthocyanins. This process consists of alkaline cooking of corn kernels in a lime or calcium hydroxide solution, which imparts typical organoleptic characteristics to the final products. The lime cooking and subsequent thermal processing to produce tortillas and tortilla chips revealed pigment losses of >50%. Acidification of the nixtamal after alkaline cooking by adding fumaric acid significantly reduced pigment losses, thus confirming the known pigment instability under alkaline conditions [223].

In contrast, preharvest heat treatment may also be applied to effectively inhibit anthocyanin biosynthesis. Pigment formation, *e.g.* in asparagus, spears during storage can be avoided by immersion in hot water (50–55°C) [316].

The drying of fresh plant material has long been used to obtain stable products which can be stored for an extended period of time by reducing  $a_{\rm w}$  values and thus minimizing chemical and enzymatic reactions as well as microbial spoilage. The drying temperature is of particular importance for pigment retention as could be shown for prunes. Significant differences in the anthocyanin amounts were observed when prunes were dried at varying temperatures, 85, 70 and 60°C. Lower temperatures led to lower pigment degradation [152]. These findings were corroborated by another study comparing the effects of different drying methods, such as microwave-vacuum drying and freezedrying with convective drying, on strawberry pigment content. Methods which exerted lower thermal impact on the fruit yielded products with higher anthocyanin content [278]. Osmotic pretreatment prior to drying may give rise to higher pigment losses as has been shown for blueberries. Cabinet drying resulted in a 41% decrease in anthocyanin amounts, whereas a combination with the soaking in highsugar solutions led to a 49% loss, probably as a result of leaching effects during the pretreatment [303]. The drying of roselle petals at elevated temperatures (75°C compared to 50 and 25°C) and storage at 40°C for 15 wk caused a loss of only 15% of total phenolics, whereas the portion of anthocyanins decreased from ~80% to ~50% of the total phenolics indicating higher susceptibility of the pigments to thermal degradation or formation of oligomeric and polymeric products [102]. In contrast, partial drying of grapes for the production of dessert wines may also be responsible for their increased anthocyanin content which cannot simply be attributed to concentration due to water loss. Stimulation of metabolic pathways as a consequence of the stress situation during the slow tunnel-drying procedure must also play a role [249]. Thus, dehydration may be a suitable method for maintaining high anthocyanin levels [95].

Among other functions plant phenolics act as UV filters protecting plant tissues from damaging radiation. Thus, enhanced biosynthesis of polyphenols is a common response to UV irradiation during plant growth. However, UV irradiation of fruit and vegetables as a postharvest treatment has also been shown to improve quality throughout storage, e.g. by increasing anthocyanin levels in strawberries [158]. In another study UV-C irradiation doses of 4.1 kJ/m<sup>2</sup>, alone or in combination with heat treatment at 45°C, significantly increased anthocyanin amounts in strawberries, but nonirradiated control samples showed an even higher pigment content. This might be ascribed to the differing effects of low and high UV-C doses on the rate of PAL expression [250]. Therefore, further studies are still required to investigate effects of various irradiation doses on strawberries of several cultivars and ripening stages. In contrast to these results, ready-to-eat pomegranate arils did not show a change in their anthocyanin content when irradiated with UV-C doses ranging from 0.56 to 13.62 kJ/m<sup>2</sup> compared to the control samples, whereas the harvest date significantly affected several quality parameters at the end of the storage trials over 15 days under MA [284].

UV irradiation of processed products has a detrimental effect on pigment stability. Irradiating black currant extracts with UV light (40 W) at 40°C led to a 45–55% loss of cyanidin and delphinidin glycosides after 4 h [308].

Anthocyanin stability may also be significantly affected by the atmosphere composition. Although the total phenolic content of cranberries was not affected by CA storage, a moderate effect of the CO<sub>2</sub> concentration (but not of the O<sub>2</sub> levels) on the content was observed. However, individual compounds were not assessed [310]. Blueberries stored in air or high-O<sub>2</sub>(40-100% O<sub>2</sub>) atmospheres did not show significant differences in their lightness throughout storage, whereas at oxygen concentrations ≥60% hue angles were increased after 4 and 5 wk of storage, indicating a more intense blue colour. Similarly, the total anthocyanin content increased 1.2-fold after 35 days of storage under the same conditions, thus exhibiting a significantly higher content and ORAC values compared to 40% O2- and air-treated fruit. The same observations were made for the nine individual anthocyanins detected in the blueberries [14]. CO<sub>2</sub> atmospheres or anaerobic conditions are also employed for the postharvest treatment of fruit and vegetables. Black ripe table olives showed a rapid loss of monomeric anthocyanins within 15 days of anaerobic fermentation which was attributed to diffusion of the compounds into the brines and the formation of more stable compounds [318]. However, storing fresh unripe table olives in a CO<sub>2</sub> atmosphere resulted in elevated anthocyanin biosynthesis rates after 3 days of storage. This was different from the change in total phenolic and total flavonoid content [319]. Litchi fruit stored in air, MA and CA at 3°C generally exhibited decreasing anthocyanin content throughout storage with CA storage at low and high O2 concentrations showing a slower downward trend compared to the MA treatment [296]. Thus, contrasting effects of MA and CA storage of fruit and vegetables are reported in the literature indicating that various plant matrices may behave differently even under the same or slightly modified storage conditions and that there is a need to assess further parameters to improve postharvest shelflife.

Further treatments designed to improve postharvest quality during storage have been described. The coating of fresh fruit as a means of shelf-life extension has been studied using cold-stored litchi which show rapid quality loss due to surface browning when they are subsequently held at ambient temperature. Chitosan coating was effective in maintaining higher anthocyanin levels for an extended period of time and delaying pericarp browning [294]. In contrast, preharvest spraying of apples with aqueous kaolin suspensions has been applied to prevent sunburn of apples. A significant effect of the film on the fruit surface on anthocyanin content was not observed, *i.e.* treated apples were not different from control samples in terms of their surface colour [292]. Nowadays, MCP is commonly used as a postharvest inhibitor of ethylene synthesis which itself affects

anthocyanin accumulation. Whereas untreated apples showed a decrease in pigment content throughout storage, MCP treated fruit exhibited higher pigment levels and did not show a significant decrease after harvest [41].

Various parameters during juice processing affect the pigment stability and colour of the juices. Therefore, technologies for the preparation of products with high anthocyanin content and improved storage stability are required. Temperature strongly affects the anthocyanin content and stability. A systematic investigation of the temperaturetime regimes applied for the hot water extraction of roselles revealed that these factors influence not only anthocyanin yields but also the colour of the extracts and the formation of polymeric pigments [317]. Elevated temperatures significantly enhance anthocyanin extraction by increasing diffusion coefficients, as was shown for pigment recovery in black carrots ranging from 25 to 50°C. Furthermore, yields of black carrot anthocyanins were also increased at pH 2.0 compared to pH 3.0 and 4.0 due to higher pigment stability in the acidic media [314]. Crushing, depectinization and centrifugation of fresh bayberries resulted in high pigment losses, additional blanching and pasteurization steps during processing yielded juices with significantly increased anthocyanin content. This can be attributed to PPO inactivation and increased cell permeation. However, up to 52-58% of the fresh fruit anthocyanins remained in the press residues. The percentage of polymeric anthocyanins and the browning index increased during the initial processing steps, whereas a gelatin-bentonite flocculation removed up to 94% of the polymeric and brown pigments [65].

High-temperature treatment (70°C, 30 min) of several grape cultivars for the production of grape juice revealed extraction rates of only 12-32% of the total anthocyanins present in the grapes. These results underline the need to optimize extraction methods to reduce the loss of these compounds [244]. As was shown for blueberries, the initial processing steps, such as thawing of frozen fruit, crushing, depectinization and pressing, usually contribute to large losses of anthocyanins, whereas clarification and concentration cause relatively little losses [58]. Mashing strawberries actually produced an increase in anthocyanin content, but this was attributed to incomplete extraction of the fresh fruit, and thus leads to underestimation of the amount of pigment in the raw material. Significant pigment losses occurred during both heating and fermentation of the mash and juice [276]. Even though the processing of strawberry juice concentrate and seedless purée generates only about 10 and 4% waste, the achenes from these waste products might be used as a source for the extraction of secondary metabolites, since they were shown to contain significant amounts of anthocyanins and further phenolic compounds [64].

Phenolic compounds may also be removed from fruit and vegetable juices by filtration and flocculation steps. However, only slightly reduced anthocyanin content was determined for pomegranate juice after ultrafiltration and preflocculation with gelatine and bentonite in combination with ultrafiltration when compared to control juices [283]. Nowadays, cell wall-degrading enzymes (mainly pectinases, cellulases and hemicellulases) are commonly applied during fruit and vegetable processing to enhance juice yields or for clarification. Usually, this also implies increased pigment extraction yields, but depending on side activities of the technical enzyme preparations anthocyanins may also be hydrolysed resulting in significantly decreased pigment levels and a different pigment profile of the juices or wines [280, 307]. In contrast, the pigment content of pomegranate juices was not affected when the juice was obtained either by peeling and centrifuge extraction or by squeezing the whole fruits, i.e. omitting thermal or enzyme-assisted steps [282].

Despite great efforts to maximize the recovery of polyphenols in general, and of anthocyanins in particular, in the course of fruit and vegetable processing (e.g. by enzymatic mash maceration, high-temperature short-time mash treatment and the application of pulsed electric fields), extraction remains incomplete [39, 58]. Thus, high anthocyanin content can be found in by-products of plant food processing. Anthocyanins are usually found in high quantities, or even exclusively, in the skins or outer parts of fruit and vegetables [13, 108, 180]. A screening of antioxidant activity and total phenolic and anthocyanin content in four apple cultivars revealed the values to be higher in the peels than in the flesh. Anthocyanins were exclusively found in the peel. Thus, the authors suggested exploiting apple peel by-products from apple sauce and canned apple manufacture for the production of functional food [217]. Statistical analyses showed that the antioxidative capacity is mainly attributed to flavan 3-ols in apple peel [114]. In red onions anthocyanins accumulated mainly in the dry skins and in the outer fleshy layer. These parts are usually removed by peeling prior to consumption. Consequently, only about 27% of the total anthocyanins of red onions are consumed [153]. Therefore, the byproducts of vegetable processing, juice production and wine making are rich sources of anthocyanins. Both anthocyanin recovery and the pigment content of the press residues are significantly affected by juice processing techniques, such as the duration of skin contact, the degree of comminution, pressing techniques and fermentation [304]. For example, press residues from black currant processing were shown to contain anthocyanins as the major phenol class amounting to up to 95% of the total phenol content as determined by HPLC, thus contributing =74% to the radical scavenging activity of the pomace extracts [165].

Anthocyanins are increasingly utilized not only as natural colourants (E 163) substituting synthetic food additives, but also because of their biofunctional properties, which may be helpful in the prevention of certain degenerative diseases. Anthocyanins may either be recovered as crude extracts from the waste products of fruit and vegetable processing or

selectively purified and concentrated, e.g. by resin adsorption [288]. Resin adsorption and desorption with alcohols has proved to be a suitable method for increasing pigment concentration because of its high selectivity for phenolic compounds and because it does not change the pigment profile during processing [290]. Winery by-products have long been used for the production of enocyanin, which has been commercialized as a natural colourant since 1879. Besides anthocyanins these extracts contain a variety of other phenolic compounds, such as hydroxybenzoic and hydroxycinnamic acids, flavan 3-ols, flavonols and stilbenes [168]. Since high amounts of phenolic compounds are present in winery by-products, especially in the stalks, peel and seeds, extracts obtained from these parts exhibit antioxidant activity. Antioxidative properties were found to be correlated with total phenolic content. In contrast, a correlation between individual phenolic compounds and the antioxidant activity of the extracts could not be established [239]. This might be ascribed to the fact that only a few low-molecular compounds were quantified and that components such as oligomeric and polymeric compounds were not considered. Similar results were obtained for the antiradical activity of red and white grape pomace extracts. Differing activities, which could not always be correlated with total phenolic content, were attributed to differences in the composition of the phenolic fraction, such as the presence of anthocyanins in red grape pomace peel, not in the white, even though individual compounds were not quantified [263].

The anthocyanin profiles of processing waste from juice production may be different from those of fresh fruit, as has been shown for blueberry by-products [60]. This might be due to different stability characteristics of individual pigments during processing, *e.g.* as regards susceptibility towards enzymatic hydrolysis caused by side activities of technical enzyme preparations.

There are a growing number of papers dealing with the colour changes and stability of individual anthocyanins during vinification and storage of grape juice or red wines. The pigment profiles of grape skins and of the resulting wines after fermentation were found to differ. This could not be attributed to different extraction rates of individual compounds since the profile of the grape skins after maceration was still unchanged. It is more likely that the differences are due to enzymatic oxidation, polymerization or adsorption to yeast cell walls [258]. Systematic investigations revealed that maceration temperature has a higher impact on anthocyanin extraction than the duration of maceration. The latter was shown to have no effect on the quantitatively predominating compounds [267]. The pigment content of wine is not only significantly affected by the ripening stage of the grapes but also by the anthocyanin yields during maceration and fermentation, which, in turn, mainly depend on the ethanol content of the mash. Higher alcohol concentrations enhance the solubilization of anthocyanins, and other phenolic compounds, such as procyanidins [266]. A direct comparison of hot and cold pressing of grape mash revealed enhanced release of anthocyanins at elevated temperatures [122]. Significant differences in the anthocyanin content of wines were observed when carbonic maceration was applied rather than fermentation/maceration techniques using pumping-over or rotary vats. However, resulting wines with lower pigment amounts exhibited higher stability, and thus, after 2 years of storage, all wines showed comparable colour density values [270]. Cryomaceration before fermentation increased the pigment content, the colour density of wines and improved the colour stability. This is possibly due to the enhanced extraction of further phenolic compounds which may act as copigments [269].

The flash release process, which consists of rapid heating of the grapes and subsequent application of a strong vacuum, enhanced anthocyanin extraction. This method results in wines with significantly higher amounts of pigments compared with conventional winemaking techniques [54]. Macerating enzymes are increasingly used during winemaking, but enzyme preparations need to be thoroughly selected since differences in the enzyme activities and side effects of these technical preparations may not always be of advantage as regards the sensory characteristics of the resulting wines [323]. As an alternative to pectolytic enzyme preparations, yeast mutants producing a polygalacturonase have been investigated and shown to improve filterability of the musts and to increase anthocyanin content [260]. However, in a red grape model solution several yeast strains reduced anthocyanin content throughout fermentation. The loss of individual pigments was higher with increasing anthocyanin polarity. This loss was due to adsorption to the yeast cell wall, but also to the formation of novel coloured compounds [257].

During the aging process, the content of monomeric anthocyanins in wines decreases significantly [209]. Usually, a first-order kinetics rate is observed. However, this pigment loss accompanies the formation of numerous condensation and oxidation products changing the stability and colour attributes of the wines. Detailed statistical analyses have been performed to investigate the effects of individual compounds on colour stability [66, 173, 230, 241]. Delphinidin and petunidin 3,5-diglucosides were considerably less stable than the other anthocyanins in a Muscadine wine, retaining only 6-34% of their initial pigment content throughout storage at 20 and 37°C, respectively, for 60 days [2]. Therefore, individual pigments exhibit differing stability and reaction rates during wine aging. Due to the complex phenolic profile of grapes and young red wines a wide range of reactions may occur during winemaking and aging. The evidence suggesting that this might yield an even more complex composition of aged wines has recently been thoroughly reviewed by Monagas et al. [171]. Wine composition still remains largely unknown [207]. Recently, 129 different compounds have been identified and quantified in a red wine aged in oak barrels and glass bottles. These components belong to four pigment families, the anthocyanins, pyranoanthocyanins, direct flavanol—anthocyanin condensation products and acetaldehyde-mediated flavanol—anthocyanin condensation products [268]. The mechanisms for the formation of such compounds, which cause the colour of red wine to change during aging from a bright red to a red brown tint, have been studied in detail in model systems [243]. Pyranoanthocyanins have also been detected in sparkling wines. Here, the second fermentation differed from the first with regard to the formation of novel pigments [246]. Although most studies on the change of the pigment profile during aging have been performed using wines and wine model systems, such pigments have also been detected in other plant extracts, *e.g.* anthocyanin—flavanol condensation products in black currant extracts [309].

The ripening stage of the grapes used for the production of aged wines is of particular importance since grapes harvested at an early stage exhibit lower pigment content, and this has been shown to affect the rate of pigment formation during aging [15]. After 2 years of storage in bottles, an average of 83-84% of monomeric anthocyanins in Tinta Miúda red wines were degraded, with cyanidin and malvidin glucosides showing the highest degradation rates. Novel compounds, such as pyruvic acid adducts, were formed [211]. The change in pigment profile throughout storage is most affected by the cultivation conditions of the grapes and the duration of aging, whereas other technological factors and the type of container (oak barrels or stainless steel tanks) have lower effects [259]. Sometimes, wine is aged in oak barrels or in steel tanks with added oak chips. The latter have been shown to decrease monomeric anthocyanins more rapidly than oak barrels, and also to produce higher colour intensities [248]. To investigate effects on colour and anthocyanin stability, the addition of copigments to grape juice has also been studied. A rosemary extract caused a bathochromic shift and hyperchromic effects but did not significantly alter the anthocyanin content. After pasteurization, pigment amounts were slightly lower than those in control juices [240]. Isoflavonoid extracts from red clover also improved the colour characteristics and pigment stability of grape juices and wines during short-time thermal treatment and a 9-wk storage period at 20 and 37°C [256]. The prefermentation addition of isolated rutin to grape mash enhanced copigmentation and anthocyanin extraction, whereas hydroxycinnamic acids caused converse results [172]. Co-winemaking of several grape cultivars was studied for the same purpose. This was shown to favour copigmentation and the enhanced formation of stable pigments during wine aging [52]. Detailed studies of these intermolecular copigmentation effects in model solutions have revealed that the stability is dependent on anthocyanin structure as well as on the nature of the copigment, or on the presence of further compounds, such as vitamin C [261, 327].

### 8.5 Summary: Anthocyanins

Several hundred anthocyanins have been identified. They can be found in a wide variety of plant foods. Studies on grapes and red wine predominate, but numerous other fruits, especially berries, and some vegetables have also been the subject of intense research activity. Most interestingly, the pigment content of fresh fruits may significantly increase throughout storage, even under cold storage conditions, due to ongoing biosynthesis of anthocyanins. Differing effects of MA and CA storage are reported in the literature, indicating that various plant matrices may behave differently even under the same storage conditions. Anthocyanins in processed foods are degraded during storage, with higher storage or process temperatures (blanching, pasteurization, drying) causing increased pigment loss. In the course of juice processing, heating steps may provide products with increased anthocyanin levels due to PPO inactivation and increased cell permeability and diffusion coefficients. Further steps involved in juice processing and winemaking, such as crushing of the fruits, depectinization, clarification and enzymatic mash treatment, may give rise to pigment loss. During storage, monomeric anthocyanins are degraded, but pigment loss accompanies the formation of numerous condensation and oxidation products changing the stability and colour attributes of the juices and wines. The novel compounds formed during winemaking and wine aging have been thoroughly studied, and complex reactions found. Wine composition still remains largely unknown. Despite great efforts to maximize anthocyanin recovery in the course of fruit and vegetable processing, extraction remains incomplete and produces by-products which are particularly rich in anthocyanins and might, therefore, be further exploited.

#### 9 Conclusions

A lot of relevant sources of flavonoids are mentioned in the summaries of the sections: *e.g.* apples, apple juice, berries, broccoli and tomatoes for phenolic acids, *e.g.* apple, apple juice and tomatoes for chalcones, *e.g.* citrus fruits for flavanones, *e.g.* citrus fruits, grapes, lettuce and parsley for flavones, *e.g.* plums, apples, onions and blueberries for flavonols, *e.g.* tea, grapes, red wine and chocolate for monomeric flavanols and, *e.g.* grapes, red wine, berries and many other fruits and some vegetables for anthocyanins.

The expectation that the structural diversity within each subgroup, and the number of different procedures and parameters would make finding homogenous tendencies unlikely, has, in most instances, been confirmed. This means that generalizations based on the summaries of individual compounds classes can rarely be made, and considerations must be limited to the particular cases dealt with in the publications. By adding a database excel table combined with a

focused and unified evaluation, specific additional information has been rendered accessible and concise.

One thing that nearly all the cases examined have in common is that the effect of storage and technology-dependent food production on the polyphenol content is often negligible in comparison to the differences in content between different varieties of plants. Variety dependence must always be considered, for all classes of compounds.

The structural formulas are taken from the publication [1] of Prof. Rainer Cermak et al.

The authors have declared no conflict of interest.

### 10 References

- [1] Cermak, R., Durazzo, A., Maiani, G., Böhm, V., et al., The influence of post-harvest processing and storage of foodstuffs on the bioavailability of flavonoids and phenolic acids, Mol. Nutr. Food Res., in press, DOI: 10.1002/mnfr.200700444.
- [2] Talcott, S., Lee, J.-H., Ellagic acid and flavonoid antioxidant content of Muscadine wine and juice, *J. Agric. Food Chem.* 2002, 50, 3186–3192.
- [3] Jamie, P., Saltveti, M. E., Post-harvest changes in broccoli and lettuce during storage in argon, helium, and nitrogen atmosphere containing 2% oxygen, *Postharvest Biol. Tech*nol. 2002, 26, 113–116.
- [4] Mullen, W., Stewart, A. J., Lean, M. E. J., Gardner, P., *et al.*, Effect of freezing and storage on the phenolics, ellagitannins, flavonoids, and antioxidant capacity of red raspberries, *J. Agric. Food Chem.* 2002, *50*, 5197–5201.
- [5] Gil-Izquierdo, A., Gil, M. I., Ferreres, F., Effect of processing techniques at industrial scale on orange juice antioxidant and beneficial health compounds, *J. Agric. Food Chem.* 2002, 50, 5107–5114.
- [6] Schulz, H., Joubert, E., Schütze, W., Quantification of quality parameters for reliable evaluation of green rooibos (*Aspala-thus linearis*), Eur. Food Res. Technol. 2003, 216, 539–543.
- [7] Fuleki, T., Ricardo-da-Silva, J. M., Effects of cultivar and processing method on the contents of catechins and procyanidins in grape juice, J. Agric. Food Chem. 2003, 51, 640–646.
- [8] Asami, D. K., Hong, Y.-J., Barrett, D. M., Mitchell, A. E., Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices, J. Agric. Food Chem. 2003, 51, 1237-1241.
- [9] Sanchez-Moreno, C., Plaza, L., de Ancos, B., Cano, M. P., Quantitative bioactive compounds assessment and their relative contribution to the antioxidant capacity of commercial orange juices, *J. Sci. Food Agric*. 2003, 83, 430–439.
- [10] Lavelli, V., Giovanelli, G., Evaluation of heat and oxidative damage during storage of processed tomato products. II. Study of oxidative damage indices, *J. Sci. Food Agric*. 2003, 83, 966–971.
- [11] Roemmelt, S., Zimmermann, N., Rademacher, W., Treutter, D., Formation of novel flavonoids in apple (*Malus × domestica*) treated with the 2-oxoglutarate-dependent dioxygenase inhibitor prohexadione-Ca, *Phytochemistry* 2003, 64, 709–716.

- [12] Kim, D. O., Chun, O. K., Kim, Y. J., Moon, H. Y., Lee, C. Y., Quantification of polyphenolics and their antioxidant capacity in fresh plums, *J. Agric. Food Chem.* 2003, 51, 6509-6515.
- [13] Tsao, R., Yang, R., Optimization of a new mobile phase to know the complex and real polyphenolic composition: Towards a total phenolic index using high-performance liquid chromatography, *J. Chromatogr. A* 2003, 1018, 29–40.
- [14] Zheng, Y., Wang, C. Y., Wang, S. Y., Zheing, W., Effect of high-oxygen atmospheres on blueberry phenolics, anthocyanins, and antioxidant capacity, *J. Agric. Food Chem.* 2003, 51,7162–7169.
- [15] Perez-Magarino, S., Gonzalez-San Jose, M. L., Evolution of flavanols, anthocyanins, and their derivatives during the aging of red wines elaborated from grapes harvested at different stages of ripening, *J. Agric. Food Chem.* 2004, 52, 1181– 1189
- [16] Napolitano, A., Cascone, A., Graziani, G., Ferracane, R., et al., Influence of variety and storage on the polyphenol composition of apple flesh, J. Agric. Food Chem. 2004, 52, 6526–6531
- [17] Benitez, P., Castro, R., Natera, R., Garcia-Barroso, C., Effects of grape destemming on the polyphenolic and volatile content of Fino sherry wine during alcoholic fermentation, *Food Sci. Technol. Int.* 2005, *11*, 233–242.
- [18] Erdelmeier, C., Schmidt, P. C., Walker, R., Hopfenextrakte, Herstellung und Verwendung, Patent DE 10 2004 012 830 A1, 2005.
- [19] Adom, K. K., Sorrells, M. E., Liu, R. H., Phytochemicals and antioxidant activity of milled fractions of different wheat varieties, J. Agric. Food Chem. 2005, 53, 2297–2306.
- [20] Prenesti, E., Toso, S., Berto, S., Redox chemistry of red wine. Quantification by an oscillating reaction of the overall antioxidant power as a function of the temperature, *J. Agric. Food Chem.* 2005, 53, 4220–4227.
- [21] Manthey, J. A., Buslig, B. S., Distribution of furanocoumarins in grapefruit juice fractions, *J. Agric. Food Chem.* 2005, *53*, 5158–5163.
- [22] Diaz-Batalla, L., Widholm, J. M., Fahey, G. C., Castano-Tostado, E., Paredes-Lopez, O., Chemical components with health implications in wild and cultivated Mexican common bean seeds (*Phaseolus vulgaris* L.), *J. Agric. Food Chem.* 2006, 54, 2045 2052.
- [23] Mozetic, B., Simcic, M., Trebse, P., Anthocyanins and hydroxycinnamic acids of Lambert Compact cherries (*Pru-nus avium L.*) after cold storage and 1-methylcyclopropene treatment. *Food Chem.* 2006, 97, 302–309.
- [24] Rocha, A. M. C. N., Morais, A. M. M. B., Polyphenoloxidase activity and total phenolic content as related to browning of minimally processed 'Jonagored' apple, *J. Sci. Food Agric*. 2002, 82, 120–126.
- [25] Kosecki, P. M., Villaviciencio, A. L. C. H., Brito, M. S., Nahme, L. C. et al., Effects of irradiation in medicinal and eatable herbs, *Radiat. Phys. Chem.* 2002, 63, 681–684.
- [26] Jeffery, E. H., Brown, A. F., Kurilich, A. C., Matusheski, N., et al., Variation in content of bioactive components in broccoli, J. Food Compost. Anal. 2003, 16, 323–330.
- [27] Gómez-Alonso, S., Fregapane, G., Salvador, M. D., Gordon, M. H., Changes in phenolic composition and antioxidant activity of virgin olive oil during frying, *J. Agric. Food Chem.* 2003, 51, 667–672.

- [28] Strålsjö, L. M., Witthöft, C. M., Sjöholm, I. M., Jägerstad, M. I., Folate content in strawberries (*Fragaria* × *ananassa*): Effects of cultivar, ripeness, year of harvest, storage, and commercial processing, *J. Agric. Food Chem.* 2003, 51, 128–133
- [29] Lyons, M. M., Yu, C. W., Toma, R. B., Cho, S. Y. et al., Resveratrol in raw and baked blueberries and bilberries, J. Agric. Food Chem. 2003, 51, 5867–5870.
- [30] Starzynska, A., Leja, M., Mareczek, A., Physiological changes in the antioxidant system of broccoli flower buds senescing during short-term storage, related to temperature and packaging, *Plant Sci.* 2003, 165, 1387–1395.
- [31] Karakaya, S., Bioavailability of phenolic compounds, *Crit. Rev. Food Sci. Nutr.* 2004, 44, 453–464.
- [32] Sioumis, N., Kallithraka, S., Tsoutsouras, E., Makris, D. P., Kefalas, P., Browning development in white wines: Dependence on compositional parameters and impact on antioxidant characteristics, Eur. Food Res. Technol. 2005, 220, 326–330.
- [33] Ninfali, P., Mea, G., Giorgini, S., Rocchi, M., Bacchiocca, M., Antioxidant capacity of vegetables, spices and dressings relevant to nutrition, *Br. J. Nutr.* 2005, *93*, 257–266.
- [34] Sacchi, K. L., Bisson, L. F., Adams, D. O., A review of the effect of winemaking techniques on phenolic extraction in red wines, Am. J. Enol. Viticult. 2005, 56, 197–206.
- [35] Hrncirik, K., Fritsche, S., Relation between the endogenous antioxidant system and the quality of extra virgin olive oil under accelerated storage conditions, *J. Agric. Food Chem.* 2005, 53, 2103–2110.
- [36] Wen, X., Enokizo, A., Hattori, H., Kobayashi, S., et al., Effect of roasting on properties of the zinc-chelating substance in coffee brews, J. Agric. Food Chem. 2005, 53, 2684–2689.
- [37] Hassimotto, N. M. A., Genovese, M. I., Lajolo, F. M., Antioxidant activity of dietary fruits, vegetables, and commercial frozen fruit pulps, J. Agric. Food Chem. 2005, 53, 2928– 2935.
- [38] Rivero, D., Pérez-Magariño, S., González-Sanjosé, M. L., Valls-Belles, V., et al., Inhibition of induced DNA oxidative damage by beers: Correlation with the content of polyphenols and melanoidins, J. Agric. Food Chem. 2005, 53, 3637– 3642.
- [39] van der Sluis, A. A., Dekker, M., Skrede, G., Jongen, W. M. F., Activity and concentration of polyphenolic antioxidants in apple juice. 1. Effect of existing production methods, *J. Agric. Food Chem.* 2002, 50, 7211–7219.
- [40] Gliszczynska-Swiglo, A., Tyrakowska, B., Quality of commercial apple juices evaluated on the basis of the polyphenol content and the TEAC antioxidant activity, *J. Food Sci.* 2003, 68, 1844–1849.
- [41] MacLean, D. D., Murr, D. P., DeEll, J. R., Horvath, C. R., Postharvest variation in apple (*Malus × domestica* borkh.) flavonoids following harvest, storage, and 1-MCP treatment. *J. Agric. Food Chem.* 2006, 54, 870–878.
- [42] Goncalves, B., Landbo, A. K., Knudsen, D., Silva, A. P., et al., Effect of ripeness and postharvest storage on the phenolic profiles of cherries (*Prunus avium L.*), J. Agric. Food Chem. 2004, 52, 523–530.
- [43] Gonçalves, B., Landbo, A.-C., Let, M., Silva, A. P., et al., Storage affects the phenolic profiles and antioxidant activities of cherries (*Prunus avium L*) on human low-density lipoproteins, J. Sci. Food Agric. 2004, 84, 1013–1020.
- [44] Alasalvar, C., Al-Farsi, M., Shahidi, F., Compositional characteristics and antioxidant components of cherry laurel varieties and pekmez, *J. Food Sci.* 2005, 70, S47–S52.

- [45] Ferreira, D., Guyot, S., Marnet, N., Delgadillo, I., et al., Composition of phenolic compounds in a Portuguese pear (Pyrus communis L. var. S. Bartolomeu) and changes after sun-drying, J. Agric. Food Chem. 2002, 50, 4537 4544.
- [46] Galvis-Sánchez, A. C., Fonseca, S. C., Morais, A. M. M. B., Malcata, F. X., Sensorial and physicochemical quality responses of pears (cv. Rocha) to long-term storage under controlled atmospheres, *J. Sci. Food Agric*. 2004, 84, 1646– 1656
- [47] Czyzewska, A., Pogorzelski, E., Changes to polyphenols in the process of production of must and wines from blackcurrant and cherries. Part I. Total polyphenols and phenolic acids, Eur. Food Res. Technol. 2002, 214, 148–154.
- [48] Cantos, E., Espín, J. C., Fernández, M. J., Oliva, J., Tomás-Barberán, F. A., Postharvest UV-C-irradiated grapes as a potential source for producing stilbene-enriched red wines, *J. Agric. Food Chem.* 2003, 51, 1208–1214.
- [49] Zafrilla, P., Morillas, J., Mulero, J., Cayuela, J. M., et al., Changes during storage in conventional and ecological wine: Phenolic content and antioxidant activity, J. Agric. Food Chem. 2003, 51, 4694–4700.
- [50] Ebelashvili, N., The effect of thermal treatment of pulp on the variation of phenol carboxylic acids and color intensity of strong pink wines, *Bull. Georg. Acad. Sci.* 2005, *171*, 142– 144.
- [51] Bautista-Ortín, A. B., Martínez-Cutillas, A., Ros-García, J. M., López-Roca, J. M., Gómez-Plaza, E., Improving colour extraction and stability in red wines: The use of maceration enzymes and enological tannins, *Int. J. Food Sci. Technol.* 2005, 40, 867–878.
- [52] Lorenzo, C., Pardo, F., Zalacain, A., Alonso, G. L., Salinas, M. R., Effect of red grapes co-winemaking in polyphenols and color of wines, *J. Agric. Food Chem.* 2005, 53, 7609– 7616.
- [53] Recamales, A. F., Sayago, A., Gonzalez-Miret, M. L., Hernanz, D., The effect of time and storage conditions on the phenolic composition and colour of white wine, *Food Res. Int.* 2006, 39, 220–229.
- [54] Morel-Salmi, C., Souquet, J. M., Bes, M., Cheynier, V., Effect of flash release treatment on phenolic extraction and wine composition, J. Agric. Food Chem. 2006, 54, 4270–4276.
- [55] Tolonen, M., Taipale, M., Viander, B., Pihlava, J.-M., et al., Plant-derived biomolecules in fermented cabbage, J. Agric. Food Chem. 2002, 50, 6798–6803.
- [56] García Moreno, M. V., García Barroso, C., Comparison of the evolution of low molecular weight phenolic compounds in typical sherry wines: Fino, Amontillado, and Oloroso, J. Agric. Food Chem. 2002, 50, 7556–7563.
- [57] Cruz, J. M., Domínguez, H., Parajó, J. K., Assessment of the production of antioxidants from winemaking waste solids, *J. Agric. Food Chem.* 2004, 52, 5612–5620.
- [58] Lee, J., Durst, R. W., Wrolstad, R. E., Impact of juice processing on blueberry anthocyanins and polyphenolics: Comparison of two pretreatments, *J. Food Sci.* 2002, *67*, 1660–1667.
- [59] Rossi, M., Giussani, E., Morelli, R., Lo Scalzo, R., et al., Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice, Food Res. Int. 2003, 36, 999–1005.
- [60] Lee, J., Wrolstad, R. E., Extraction of anthocyanins and polyphenolics from blueberry processing waste, *J. Food Sci.* 2004, 69, C564–C573.

- [61] Martin, L. J., Matar, C., Increase of antioxidant capacity of the lowbush blueberry (*Vaccinium angustifolium*) during fermentation by a novel bacterium from the fruit microflora, *J. Sci. Food Agric*. 2005, 85, 1477–1484.
- [62] Ayaz, F. A., Hayirlioglu-Ayaz, S., Gruz, J., Novak, O., Strnad, M., Separation, characterization, and quantification of phenolic acids in a little-known blueberry (*Vaccinium arctosta-phylos* L.) fruit by HPLC-MS, *J. Agric. Food Chem.* 2005, 53, 8116–8122.
- [63] Olsson, M. E., Ekvall, J., Gustavsson, K.-E., Nilsson, J., et al., Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria × ananassa): Effects of cultivar, ripening, and storage, J. Agric. Food Chem. 2004, 52, 2490–2498.
- [64] Aaby, K., Skrede, G., Wrolstad, R. E., Phenolic composition and antioxidant activities in flesh and achenes of strawberries (*Fragaria ananassa*), J. Agric. Food Chem. 2005, 53, 4032– 4040
- [65] Fang, Z. X., Zhang, M., Sun, Y. F., Sun, J., How to improve bayberry (*Myrica rubra* Sieb. et Zucc.) juice color quality: Effect of juice processing on bayberry anthocyanins and polyphenolics, *J. Agric. Food Chem.* 2006, 54, 99–106.
- [66] Manthey, J. A., Fractionation of orange peel phenols in ultrafiltered molasses and mass balance studies of their antioxidant levels, J. Agric. Food Chem. 2004, 52, 7586-7592.
- [67] Talcott, S. T., Moore, J. P., Lounds-Singleton, A. J., Percival, S. S., Ripening associated phytochemical changes in mangos (*Mangifera indica*) following thermal quarantine and lowtemperature storage, *J. Food Sci.* 2005, 70, C337–C341.
- [68] Talcott, S. T., Percival, S. S., Pittet-Moore, J., Celoria, C., Phytochemical composition and antioxidant stability of fortified yellow passion fruit (*Passiflora edulis*), J. Agric. Food Chem. 2003, 51, 935–941.
- [69] Al-Farsi, M., Alasalvar, C., Morris, A., Baron, M., Shahidi, F., Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (*Phonenix dactylifery* L.) varieties grown in Oman, *J. Agric. Food Chem.* 2005, 53, 7592–7599.
- [70] Vallejo, F., Tomas-Barberan, F., Garcia-Viguera, C., Health-promoting compounds in broccoli as influenced by refrigerated transport and retail sale period, *J. Agric. Food Chem.* 2003, 51, 3029–3034.
- [71] Vallejo, F., Gil-Izquierdo, A., Perez-Vicente, A., Garcia-Viguera, C., *In vitro* gastrointestinal digestion study of broccoli inflorescence phenolic compounds, glucosinolates, and vitamin C, *J. Agric. Food Chem.* 2004, 52, 135–138.
- [72] Re, R., Bramley, P. M., Rice-Evans, C., Effects of food processing on flanonoids and lycopene status in a Mediterranean tomato variety, *Free Radic. Res.* 2002, 36, 803–810.
- [73] Raffo, A., Leonardi, C., Fogliano, V., Ambrosino, P., et al., Nutritional value of cherry tomatoes (*Lycopersicon esculentum* cv. Naomi F1) harvested at different ripening stages, *J. Agric. Food Chem.* 2002, 50, 6550–6556.
- [74] Slimestad, R., Verheul, M. J., Content of chalconaringenin and chlorogenic acid in cherry tomatoes is strongly reduced during postharvest ripening, *J. Agric. Food Chem.* 2005, 53, 7251–7256.
- [75] Cantos, E., Tudela, J. A., Gil, M. I., Espín, J. C., Phenolic compounds and related enzymes are not rate-limiting in browning development of fresh-cut potatoes, *J. Agric. Food Chem.* 2002, 50, 3015–3023.

- [76] Tudela, J. A., Cantos, E., Espín, J. C., Tomás-Barberán, F. A., Gil, M. I., Induction of antioxidant flavonol biosynthesis in fresh-cut potatoes. Effect of domestic cooking, *J. Agric. Food Chem.* 2002, 50, 5925–5931.
- [77] Aquino-Bolañosa, E. N., Mercado-Silva, E., Effects of polyphenol oxidase and peroxidase activity, phenolics and lignin content on the browning of cut jicama, *Postharvest Biol. Technol.* 2004, 33, 275–283.
- [78] Klaiber, R. G., Baur, S., Koblo, A., Carle, R., Influence of washing treatment and storage atmosphere on phenylalanine ammonia-lyase activity and phenolic acid content of minimally processed carrot sticks, *J. Agric. Food Chem.* 2005, 53, 1065–1072.
- [79] Rodriguez-Acros, R. C., Smith, A. C., Waldron, K. W., Effect of storage on wall-bound phenolics in green asparagus, J. Agric. Food Chem. 2002, 50, 3197–3203.
- [80] Rodríguez, R., Jaramillo, S., Guillén, R., Jiménez, A., et al., Cell wall phenolics of white and green asparagus, J. Sci. Food Agric. 2005, 85, 971–978.
- [81] Bajpai, M., Mishra, A., Prakash, D., Antioxidant and free radical scavenging activities of some leafy vegetables, *Int. J. Food Sci. Nutr.* 2005, 56, 473–481.
- [82] Lopez-Amoros, M. L., Hernandez, T., Estrella, I., Effect of germination on legume phenolic compounds and their antioxidant activity, *J. Food Compost. Anal.* 2006, 19, 277–283.
- [83] Psomiadou, E., Tsimidou, M., Stability of virgin olive oil. 1. Autoxidation studies, *J. Agric. Food Chem.* 2002, 50, 716–721.
- [84] Gimeno, E., Castellote, A. I., Lamuela-Raventós, R. M., De la Torre, M. C., López-Sabater, M. C., The effects of harvest and extraction methods on the antioxidant content (phenolics, a-tocopherol, and β-carotene) in virgin olive oil, *Food Chem*. 2002, 78, 207–211.
- [85] Obied, H. K., Allen, M. S., Bedgood, D. R., Prenzler, P. D., Robards, K., Investigation of Australian olive mill waste for recovery of biophenols, *J. Agric. Food Chem.* 2005, 53, 9911–9920.
- [86] Hansen, H. B., Andreasen, M. F., Nielsen, M. M., Larsen, L. M., et al., Changes in dietary fiber, phenolic acids and activity of endogenous enzymes during rye bread-making, Eur. Food Res. Technol. 2002, 214, 33–42.
- [87] Bryngelson, S., Dimberg, L. H., Kamal-Eldin, A., Effects of commercial processing on levels of antioxidants in oats (*Avena sativa L.*), J. Agric. Food Chem. 2002, 50, 1890– 1896.
- [88] Dicko, M. H., Gruppen, H., Traore, A. S., van Berkel, W. J. H., Voragen, A. G. J., Evaluation of the effect of germination on phenolic compounds and antioxidant activities in *Sorghum* varieties, *J. Agric. Food Chem.* 2005, 53, 2581–2588.
- [89] Zhou, K., Yin, J.-J., Yu, L., Phenolic acid, tocopherol and carotenoid compositions, and antioxidant functions of hard red winter wheat bran, J. Agric. Food Chem. 2005, 53, 3916– 3922.
- [90] Kim, K.-H., Tsao, R., Yang, R., Cui, S. W., Phenolic acid profiles and antioxidant activities of wheat bran extracts and the effect of hydrolysis conditions, *Food Chem.* 2006, 95, 466–473.
- [91] Martínez-Tomé, M., Murcia, M. A., Frega, N., Ruggieri, S., et al., Evaluation of antioxidant capacity of cereal brans, J. Agric. Food Chem. 2004, 52, 4690–4699.
- [92] Szwajgier, D., Pielecki, J., Targonski, Z., Changes of free ferulic and coumaric acid contents during malting of barley grain, Pol. J. Food Nutr. Sci. 2005, 14, 423–429.

- [93] Tian, S., Nakamura, K., Cui, T., Kayahara, H., High-performance liquid chromatographic determination of phenolic compounds in rice, J. Chromatogr. A 2005, 1063, 121–128.
- [94] Lee, S.-C., Jeong, S.-M., Kim, S.-Y., Nam, K. C., Ahn, D. U., Effect of far-infrared irradiation on the antioxidant activity of defatted sesame meal extracts, *J. Agric. Food Chem.* 2005, 53, 1495–1498.
- [95] Zadernowski, R., Naczk, M., Czaplicki, S., Rubinskiene, M., Szalkiewicz, M., Composition of phenolic acids in sea buckthorn (*Hippophae rhamnoides L.*) berries, *J. Am. Oil Chem. Soc.* 2005, 82, 175–179.
- [96] Liu, L., Zhou, H., Sun, S., Wang, Q., Li, G., The effects of Chinese traditional processing method on components in semen Sinapis albae, Am. J. Biochem. Biotechnol. 2005, 1, 64-68
- [97] Del Castillo, M. D., Ames, J. M., Gordon, M. H., Effect of roasting on the antioxidant activity of coffee brews, *J. Agric. Food Chem.* 2002, 50, 3698–3703.
- [98] Chen, Y.-C., Sugiyama, Y., Abe, N., Kuruto-Niwa, R., et al., DPPH radical-scavenging compounds from Dou-Chi, a soybean fermented food, Biosci. Biotechnol. Biochem. 2005, 69, 999–1006.
- [99] Kim, E. H., Kim, S. H., Chung, J. I., Chi, H. Y., et al., Analysis of phenolic compounds and isoflavones in soybean seeds (*Glycine max* (L.) Merill) and sprouts grown under different conditions, Eur. Food Res. Technol. 2006, 222, 201–208.
- [100] Gil-Izquierdo, A., Conesa, M. A., Ferreres, F., Gil, M. I., Influence of modified atmosphere packaging on quality, vitamin C and phenolic content of artichokes (*Cynara scoly-mus* L.), *Eur. Food Res. Technol.* 2002, 215, 21–27.
- [101] Akissoe, N., Mestres, C., Hounhouigan, J., Nago, M., Biochemical origin of browning during the processing of fresh yam (*Dioscorea* spp.) into dried product, *J. Agric. Food* Chem. 2005, 53, 2552–2557.
- [102] Tsai, P.-J., McIntosh, J., Pearce, P., Camden, B., Jordan, B. R., Anthocyanin and antioxidant capacity in Roselle (*Hibiscus sabdariffa* L.) extract, *Food Res. Int.* 2002, 35, 351–356.
- [103] Rojas, L. B., Quideau, S., Pardon, P., Charrouf, Z., Colorimetric evaluation of phenolic content and GC-MS characterization of phenolic composition of alimentary and cosmetic Argan oil and press cake, *J. Agric. Food Chem.* 2005, 53, 9122–9127.
- [104] Duenas, M., Fernández, D., Hernández, T., Estrella, I., Munoz, R., Bioactive phenolic compounds of cowpeas (Vigna sinensis L). Modifications by fermentation with natural microflora and with Lactobacillus plantarum ATCC 14977, J. Sci. Food Agric, 2005, 85, 297–304.
- [105] Tesfaye, W., Morales, M. L., García-Parrilla, M. C., Troncoso, A. M., Evolution of phenolic compounds during an experimental aging in wood of sherry vinegar, *J. Agric. Food Chem.* 2002, 50, 7053–7061.
- [106] Connor, A. M., Luby, J. J., Hancook, J. F., Berkheimer, S., Hanson, E. J., Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage, J. Agric. Food Chem. 2002, 50, 893–898.
- [107] Lee, K. W., Kim, Y. J., Kim, D. O., Lee, H. J., Lee, C. Y., Major phenolics in apple and their contribution to the total antioxidant capacity, *J. Agric. Food Chem.* 2003, 51, 6516– 6520.

- [108] Tsao, R., Yang, R., Young, J. C., Zhu, H., Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC), *J. Agric. Food Chem.* 2003, 51, 6347–6353.
- [109] Chinnici, F., Gaiani, A., Natali, N., Riponi, C., Galassi, S., Improved HPLC determination of phenolic compounds in cv. Golden Delicious apples using a monolithic column, *J. Agric. Food Chem.* 2004, 52, 3–7.
- [110] Lotito, S. B., Frei, B., Relevance of apple polyphenols as antioxidants in human plasma: Contrasting in vitro and in vivo effects, Free Radic. Biol. Med. 2004, 36, 201–211.
- [111] Mihalev, K., Schieber, A., Mollov, P., Carle, R., Effect of mash maceration on the polyphenolic content and visual quality attributes of cloudy apple juice, *J. Agric. Food Chem.* 2004, 52, 7306–7310.
- [112] Kahle, K., Kraus, M., Richling, E., Polyphenol profiles of apple juices, Mol. Nutr. Food Res. 2005, 49, 797–806.
- [113] van der Sluis, A. A., Dekker, M., van Boekel, M. A. J. S., Activity and concentration of polyphenolic antioxidants in apple juice. 3. Stability during storage, *J. Agric. Food Chem.* 2005, 53, 1073–1080.
- [114] Tsao, R., Yang, R., Xie, S., Sockovie, E., Khanizadeh, S., Which polyphenolic compounds contribute to the total antioxidant activities of apple? *J. Agric. Food Chem.* 2005, 53, 4989–4995.
- [115] Alonso-Salces, R. M., Herrero, C., Barranco, A., Berrueta, L. A., et al., Classification of apple fruits according to their maturity state by the pattern recognition analysis of their polyphenolic compositions, Food Chem. 2005, 93, 113– 123.
- [116] Slimestad, R., Verheul, M. J., Seasonal variation in the level of plant constituents in greenhouse production of cherry tomatoes, *J. Agric. Food Chem.* 2005, 53, 3114–3119.
- [117] van Heerden, F. R., van Wyk, B. E., Viljoen, A. M., Steenkamp, P. A., Phenolic variation in wild populations of *Aspalathus linearis* (rooibos tea), *Biochem. Syst. Ecol.* 2003, 31, 885–895.
- [118] Jaganyi, D., Wheeler, P. J., Rooibos tea: Equilibrium and extraction kinetics of aspalathin, *Food Chem.* 2003, 83, 121–126.
- [119] Gil-Izquierdo, A., Gil, M. I., Tomas-Barberan, F. A., Ferreres, F., Influence of industrial processing on orange juice flavanone solubility and transformation to chalcones under gastrointestinal conditions, *J. Agric. Food Chem.* 2003, 51, 3024–3028.
- [120] Bazemore, R., Rouseff, R., Naim, M., Linalool in orange juice: Origin and thermal stability, *J. Agric. Food Chem.* 2003, 51, 196–199.
- [121] Selga, A., Sort, X., Bobet, R., Torres, J. L., Efficient one pot extraction and depolymerization of grape (*Vitis vinifera*) pomace procyanidins for the preparation of antioxidant thioconjugates, *J. Agric. Food Chem.* 2004, 52, 467–473.
- [122] Sánchez-Moreno, C., Plaza, L., Elez-Martínez, P., De Ancos, B., et al., Impact of high pressure and pulsed electric fields on bioactive compounds and antioxidant activity of orange juice in comparison with traditional thermal processing, J. Agric. Food Chem. 2005, 53, 4403–4409.
- [123] Lee, H. S., Kim, J. G., Effects of debittering on red grapefruit juice concentrate, Food Chem. 2003, 82, 177–180.
- [124] Franke, A. A., Custer, L. J., Arakaki, C., Murphy, S. P., Flavonoid levels of fruits and vegetables consumed in Hawaii, J. Food Compost. Anal. 2004, 17, 1–35.

- [125] Del Caro, A., Piga, A., Vacca, V., Agabbio, M., Changes of flavonoids, vitamin C and antioxidant capacity in minimally processed citrus segments and juices during storage, *Food Chem.* 2004, 84, 99–105.
- [126] Patil, B. S., Vanamalaa, J., Hallmanc, G., Irradiation and storage influence on bioactive components and quality of early and late season 'Rio Red' grapefruit (*Citrus paradisi* Macf.), *Postharvest Biol. Technol.* 2004, 34, 53–64.
- [127] Vanamala, J., Cobb, G., Turner, N. D., Lupton, J. R., et al., Bioactive compounds of grapefruit (Citrus paradisi cv. Rio Red) respond differently to postharvest irradiation, storage, and freeze drying, J. Agric. Food Chem. 2005, 53, 3980– 3985.
- [128] Calabrò, M. L., Galtieri, V., Cutroneo, P., Tommasini, S., et al., Study of extraction procedure by experimental design and validation of a LC method for determination of flavonoids in Citrus bergamia juice, J. Pharm. Biomed. Anal. 2004, 35, 349–363.
- [129] Marin, F. R., Martinez, M., Uribesalgo, S., Castillo, M. J., Frutos, M. J., Changes in nutraceutical composition of lemon juices according to different industrial extraction systems, *Food Chem.* 2002, 78, 319–324.
- [130] Del Rìo, J. A., Fuster, M. D., Gomez, P., Porras, I., et al., Citrus limon: A source of flavonoids of pharmaceutical interest, Food Chem. 2004, 84, 457–461.
- [131] Fabjan, N., Rode, J., Kosir, I. J., Wang, Z., et al., Tartary buckwheat (Fagopyrum tataricum Gaertn.) as a source of dietary rutin and quercitrin, J. Agric. Food Chem. 2003, 51, 6452–6455.
- [132] Wang, M., Simon, J. E., Aviles, I. F., He, K., et al., Analysis of antioxidative phenolic compounds in artichoke (*Cynara scolymus L.*), *J. Agric. Food Chem.* 2003, 51, 601–608.
- [133] Yao, L., Jiang, Y., Singanusong, R., D'Arcy, B., et al., Flavonoids in Australian Melaleuca, Guioa, Lophostemon, Banksia and Helianthus honeys and their potential for floral authentication, Food Res. Int. 2004, 37, 166–174.
- [134] Vasilopoulou, E., Georga, K., Joergensen, M. B., Naska, A., Trichopoulou, A., The antioxidant properties of Greek foods and the flavonoid content of the Mediterranean menu, *Curr. Med. Chem. Immun.*, *Endoc. Metab. Agents* 2005, 5, 33–45.
- [135] Lavelli, V., Bondesan, L., Secoiridoids, tocopherols, and antioxidant activity of monovarietal extra virgin olive oils extracted from destoned fruits, *J. Agric. Food Chem.* 2005, 53, 1102–1107.
- [136] Gil-Izquierdo, A., Riquelme, M. T., Porras, I., Ferreres, F., Effect of the rootstock and interstock grafted in lemon tree (*Citrus limon L. Burm.*) on the flavonoid content of lemon juice, *J. Agric. Food Chem.* 2004, 52, 324–331.
- [137] Arabbi, P. R., Genovese, M. I., Lajolo, F. M., Flavonoids in vegetables foods commonly consumed in Brazil and estimated ingestion by the Brazilian population, *J. Agric. Food Chem.* 2004, 52, 1124–1131.
- [138] Maranz, S., Wiesman, Z., Garti, N., Phenolic constituents of shea (Vitellaria paradoxa) kernels, J. Agric. Food Chem. 2003, 51, 6268-6273.
- [139] Wang, S. P., Huang, K. J., Determination of flavonoids by high-performance liquid chromatography and capillary electrophoresis, J. Chromatogr. A 2004, 1032, 273–279.
- [140] Asenstorfer, R. E., Wang, Y., Mares, D. J., Chemical structure of flavonoid compounds in wheat (*Triticum aestivum* L.) flour that contribute to the yellow colour of Asian alkaline noodles, *J. Cereal Sci.* 2006, 43, 108–119.

- [141] Zhang, Y., Bao, B., Lu, B., Ren, Y., et al., Determination of flavone C-glycosides in antioxidant of bamboo leaves (AOB) fortified foods by reversed-phase high-performance liquid chromatography with ultraviolet diode array detection, J. Chromatogr. A 2005, 1065, 177–185.
- [142] Anagnostopoulou, M. A., Kefalas, P., Kokkalou, E., Assimo-poulou, A., Papageorgiou, V. P., Analysis of antioxidant compounds in sweet orange peel by HPLC-diode array detection-electrospray ionization mass spectrometry, *Biomed. Chromatogr.* 2005, 19, 138–148.
- [143] Nogata, Y., Ohta, H., Sumida, T., Sekiya, K., Effect of extraction method on the concentrations of selected bioactive compounds in mandarin juice, *J. Agric. Food Chem.* 2003, 51, 7346-7351.
- [144] Dugo, P., Mondello, L., Favoino, O., Cicero, L., et al., Characterization of cold-pressed Mexican dancy tangerine oils, Flavour Frag. J. 2005, 20, 60–66.
- [145] Robbins, R., Keck, A.-S., Banuelos, G., Finley, J. W., Cultivation conditions and selenium fertilization alter the phenolic profile, glucosinolate, and suforaphane content of broccoli, *J. Med. Food* 2005, 8, 204–214.
- [146] Shimoni, E., Stability and shelf life of bioactive compounds during food processing and storage: Soy isoflavones, *J. Food Sci.* 2004, 69, R160 – R166.
- [147] Gambelli, L., Santaroni, G. P., Polyphenols content in some Italian red wines of different geographical origins, *J. Food Compost. Anal.* 2004, 17, 613–618.
- [148] Huang, T.-C., Fu, H.-Y., Ho, C.-T., Comparative studies on some quality attributes of firm tofu sterilized with traditional and autoclaving methods, *J. Agric. Food Chem.* 2003, 51, 254–259.
- [149] Chun, O. K., Kim, D. O., Lee, C. Y., Superoxide radical scavenging activity of the major polyphenols in fresh plums, *J. Agric. Food Chem.* 2003, 51, 8067–8072.
- [150] Chun, O. K., Kim, D. O., Moon, H. Y., Kang, H. G., Lee, C. Y., Contribution of individual polyphenolics to total antioxidant capacity of plums, *J. Agric. Food Chem.* 2004, 51, 7240–7245.
- [151] Lombardi-Boccia, G., Lucarini, M., Lanzi, S., Aguzzi, A., Cappelloni, M., Nutrients and antioxidants molecules in yellow plums (*Prunus domestica* L.) from conventional and organic productions: A comparative study, *J. Agric. Food Chem.* 2004, 52, 90–94.
- [152] Del Caro, A., Piga, A., Pinna, I., Fenu, P. M., Agabbio, M., Effect of drying conditions and storage period on polyphenolic content, antioxidant capacity, and ascorbic acid of prunes, J. Agric. Food Chem. 2004, 52, 4780–4784.
- [153] Gennaro, L., Leonardi, C., Esposito, F., Salucci, M., et al., Flavonoid and carbohydrate contents in tropea red onions: Effects of homelike peeling and storage, J. Agric. Food Chem. 2002, 50, 1904–1910.
- [154] Lachman, J., Pronek, D., Hejtmankova, A., Dudjak, J., et al., Total polyphenol and main flavonoid antioxidants in different onion (Allium cepa L.) varieties, Hortic. Sci. (Prague) 2003, 30, 142–147.
- [155] Nemeth, K., Takacsova, M., Piskula, M. K., Effect of cooking on yellow onion quercetin, *Pol. J. Food Nutr. Sci.* 2003, 12, 170–174.
- [156] Takaya, Y. Kondo, Y., Furukawa, T., Niwa, M., Antioxidant constituents of radish sprout (kaiware-daikon), *Raphanus* sativus L., J. Agric. Food Chem. 2003, 51, 8061–8066.

- [157] Femia, A. P., Caderni, G., Ianni, M., Salvadori, M., et al., Effect of diets fortified with tomatoes or onions with variable quercetin-glycoside content on azoxymethane-induced aberrant crypt foci in the colon of rats, Eur. J. Nutr. 2003, 42, 346–352.
- [158] Higashio, H., Hirokane, H., Sato, F., Tokuda, S., Uragami, A., Effect of UV irradiation after the harvest on the content of flavonoid in vegetables, *Acta Hortic*. 2005, 682, 1007– 1012
- [159] Mogren, L., Gertsson, U., Olsson, M., Postharvest aspects on bioactive compounds in yellow onion (*Allium cepa*), *Acta Hortic*, 2005, 682, 535–536.
- [160] Lombard, K., Peffley, E., Geoffriau, E., Thompson, L., Herring, A., Quercetin in onion (*Allium cepa L.*) after heat-treatment simulating home preparation, *J. Food Compost. Anal.* 2005, 18, 571–581.
- [161] Crozier, A., Mullen, W., Absorption and metabolism of quercetin glucosides after the ingestion of onions by human volunteers, Congress Proceedings: BCPC International Congress Crop Science & Technology, October 31 – November 2, 2005, pp. 1065 – 1072.
- [162] Zhang, K., Zuo, Y., GC-MS determination of flavonoids and phenolic and benzoic acids in human plasma after consumption of cranberry juice, J. Agric. Food Chem. 2004, 52, 222– 227.
- [163] Vvedenskaya, I. O., Rosen, R. T., Guido, J. E., Russel, D. J., et al., Characterization of flavonols in cranberry (Vaccinium macrocarpon) powder, J. Agric. Food Chem. 2004, 52, 188– 195
- [164] Maatta, K. R., Kamal-Eldin, A., Torronen, A. R., High-performance liquid chromatography (HPLC) analysis of phenolic compounds in berries with diode array and electrospray ionization mass spectrometric (MS), *J. Agric. Food Chem.* 2003, 51, 6736–6744.
- [165] Kapasakalidis, P. G., Rastall, R. A., Gordon, M. H., Extraction of polyphenols from processed black currant (*Ribes nig-rum* L.) residues, *J. Agric. Food Chem.* 2006, 54, 4016–4021.
- [166] Innocenti, M., Gallori, S., Giaccherini, C., Ieri, F., et al., Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L., J. Agric. Food Chem. 2005, 53, 6497–6502.
- [167] Yilmaz, Y., Toledo, R. T., Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin and gallic acid, J. Agric. Food Chem. 2004, 52, 255–260.
- [168] Kammerer, D. R., Schieber, A., Carle, R., Characterization and recovery of phenolic compounds from grape pomace – a review, J. Appl. Bot. Food Qual. 2005, 79, 189–196.
- [169] Artes-Hernandez, F., Tomas-Barberan, F. A., Artes, F., Modified atmosphere packaging preserves quality of SO<sub>2</sub>free 'Superior seedless' table grapes, *Postharvest Biol. Tech*nol. 2006, 39, 146–154.
- [170] de Beer, D., Joubert, E., Gelderblom, W. C. A., Manley, M., Changes in the phenolic composition and antioxidant activity of Pinotage, Cabernet Sauvignon, Chardonnay and Chenin Blanc wines during bottle ageing, *S. Afr. J. Enol. Viticult.* 2005, *26*, 6–15.
- [171] Monagas, M., Bartolomé, B., Gómez-Cordovés, C., Updated knowledge about the presence of phenolic compounds in wine, Crit. Rev. Food Sci. Nutr. 2005, 45, 85–118.

- [172] Schwarz, M., Picazo-Bacete, J. J., Winterhalter, P., Hermosin-Gutiérrez, I., Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments, *J. Agric. Food Chem.* 2005, 53, 8372–8381.
- [173] Monagas, M., Martin-Alvarez, P. J., Bartolome, B., Gomez-Cordoves, C., Statistical interpretation of the color parameters of red wines in function of their phenolic composition during aging in bottle, *Eur. Food Res. Technol.* 2006, 222, 702–709.
- [174] Kiho, T., Usui, S., Hirano, K., Aizawa, K., Inakuma, T., Tomato paste fraction inhibiting the formation of advanced glycation end-products, *Biosci. Biotechnol. Biochem.* 2004, 68, 200–205.
- [175] Breitfellner, F., Solar, S., Sontag, G., Effect of gamma irradiation on flavonoids on strawberries, Eur. Food Res. Technol. 2002, 215, 28–31.
- [176] Wang, S. Y., Lin, H. S., Compost as soil supplement increases the level of antioxidant compounds and oxygen radical absorbance capacity in strawberries, *J. Agric. Food Chem.* 2003, 51, 6844–6850.
- [177] Kosar, M., Kafkas, E., Paydas, S., Baser, K. H., Phenolic composition of strawberry genotypes at different maturation stages, *J. Agric. Food Chem.* 2004, 52, 1586–1589.
- [178] Nakamura, K., Nakamura, C., Chiho, M., Maejima, S., et al., The functionality of buckwheat sour juice, Spec. Publ. R. Soc. Chem. 2005, 300, 350–355.
- [179] Shivashankara, K. S., Isobe, S., Al-Haq, M. I., Takenaka, M., Shiina, T., Fruit antioxidant activity, ascorbic acid, total phenol, quercetin, and carotene of irwin mango fruits stored at low temperature after high electric field pretreatment, *J. Agric. Food Chem.* 2004, 52, 1281–1286.
- [180] Berardini, N., Fezer, R., Conrad, J., Beifuss, J., et al., Screening of mango (Mangifera indica L.) cultivars for their contents of flavonol O- and xanthone C-glycosides, anthocyanins, and pectin, J. Agric. Food Chem. 2005, 53, 1563–1570.
- [181] Will, F., Hilsendegen, P., Bonerz, D., Patz, C.-D., Dietrich, H., Analytical composition of fruit juices from different sour cherry cultivars, J. Appl. Bot. Food Qual. 2005, 79, 12–16.
- [182] Kuti, J. O., Konuru, H. B., Antioxidant capacity and phenolic content in leaf extracts of tree spinach (*Cnidoscolus* spp.), J. Agric. Food Chem. 2004, 52, 117–121.
- [183] Zhang, J., Satterfield, M. B., Brodbelt, J. S., Britz, S. J., et al., Structural characterization and detection of kale flavonoids by electrospray ionization mass spectrometry, Anal. Chem. 2003, 75, 6401–6407.
- [184] Zhou, Z.-H., Zhang, Y.-J., Xu, M., Yang, C.-R., Puerins A and B, two new 8-C substituted flavan-3-ols from Pu-er tea, J. Agric. Food Chem. 2005, 53, 8614–8617.
- [185] Ramirez-Coronel, M. A., Marnet, N., Kumar Kolli, V. S., Roussos, S., et al., Characterization and estimation of proanthocyanidins and other phenolics in coffee pulp (*Coffea arabica*) by thiolysis-high performance liquid chromatography, *J. Agric. Food Chem.* 2004, 52, 1344–1349.
- [186] Yao, L., Jiang, Y., D'Arcy, B., Singanusong, R., et al., Quantitative high-performance liquid chromatography analyses of flavonoids in Australian eucalyptus honeys, J. Agric. Food Chem. 2004, 52, 210–214.
- [187] Ruiz, D., Egea, J., Gil, M. I., Tomás-Barberán, F. A., Characterization and quantification of phenolic compounds in new apricot (*Prunus armeniaca* L.) varieties, *J. Agric. Food Chem.* 2005, 53, 9544–9552.

- [188] Missang, C. E., Guyot, S., Renard, M. G. C., Flavonols and anthocyanins of bush butter, *Dacryodes edulis* (G. Don) H. J. Lam, fruit. Changes in their composition during ripening, *J. Agric. Food Chem.* 2003, *51*, 7475–7480.
- [189] Janicki, B., Kupcewicz, B., Napierala, A., Madzielewska, A., Effect of temperature and light (UV, IR) on flavonol content in radish and alfalfa sprouts, *Folia Biol*. 2005, 53, 121– 125
- [190] Brenes, M., García, A., Dobarganes, M. C., Velasco, J., Romero, C., Influence of thermal treatments simulating cooking processes on the polyphenol content in virgin olive oil, *J. Agric. Food Chem.* 2002, 50, 5962–5967.
- [191] Tesoriere, L., Fazzari, M., Allegra, M., Livrea, M. A., Biothiols, taurine, and lipid-soluble antioxidants in the edible pulp of Silician cactus pear (*Opuntia ficus-indica*) fruits and changes of bioactive juice components upon industrial processing, *J. Agric. Food Chem.* 2005, 53, 7851–7855.
- [192] Dini, I., Tenore, G., Dini, A., Phenolic constituents of kancolla seeds, Food Chem. 2004, 84, 163–168.
- [193] Beninger, C. W., Gu, L., Prior, R. L., Junk, D. C., et al., Changes in polyphenols in the seed coat during the afterdarkening process in Pinto beans (*Phaseolus vulgaris* L.), J. Agric. Food Chem. 2005, 53, 7777-7782.
- [194] Howard, L. R., Clark, J. R., Brownmiller, C., Antioxidant capacity and phenolic content in blueberries as affected by genotype and growing season, J. Sci. Food Agric. 2003, 83, 1238–1247.
- [195] Campos, M. G., Webby, R. F., Markham, K. R., Mitchell, K. A., da Cunha, A. P., Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids, *J. Agric. Food Chem.* 2003, 51, 742 745.
- [196] Le Bourvellec, C., Le Quere, J. M., Sanoner, P., Drilleau, J. F., Guyot, S., Inhibition of apple polyphenol oxidase activity by procyanidins and polyphenol oxidation products, *J. Agric. Food Chem.* 2004, 52, 122–130.
- [197] Garcia-Alonso, M., de Pascual-Teresa, S., Santos-Buelga, C., Rivas-Gonzalo, J. C., Evaluation of the antioxidant properties of fruits, *Food Chem.* 2004, 84, 13–18.
- [198] Serrano, J., Puupponen-Pimiä, R., Dauer, A., Aura, A. M., Saura-Calixto, F., Tannins: Current knowledge of food sources, intake, bioavailability and biological effects, *Mol. Nutr. Food Res.*, in press, DOI: 10.1002/mnfr.200800337.
- [199] Monogas, M., Gomez-Cordoves, C., Bartolome, B., Laureano, O., Da Silva, J. M. R., Monomeric, oligomeric, and polymeric flavan-3-ol of wines and grapes from *Vitis vinifera* L. cv. Granciano, Tempranillo, and Cabernet Sauvignon, *J. Agric. Food Chem.* 2003, 51, 6475–6481.
- [200] Nakamura, Y., Tonogai, Y., Metabolism of grape seed polyphenol in the rat, J. Agric. Food Chem. 2003, 51, 7125– 7225.
- [201] Gu, L., Kelm, M. A., Hammarstone, J. F., Beecher, G., et al., Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation, J. Agric. Food Chem. 2003, 51, 7513-7521.
- [202] Geny, L., Saucier, C., Bracco, S., Deviaud, F., Glories, Y., Composition and cellular localization of tannins in grape seeds during maturation, J. Agric. Food Chem. 2003, 51, 8051–8054.
- [203] Gonzalez-Paramas, A. M., Esteban-Ruano, S., Santos-Buelga, C., de Pascual-Teresa, S., Rivas-Gonzalo, J. C., Flavanol content and antioxidant activity in winery byproducts, J. Agric. Food Chem. 2004, 52, 234–238.

- [204] Pineiro, Z., Palma, M., Barroso, C. G., Determination of catechins by means of extraction with pressurized liquids, *J. Chromatogr. A* 2004, *1026*, 19–23.
- [205] Fan, P., Lou, H., Yu, W., Ren, D., et al., Novel flavonol derivatives from grape seeds. *Tetrahedron Lett.* 2004, 45, 3163–3166.
- [206] Jorgensen, E. M., Marin, A. B., Kennedy, J. A., Analysis of the oxidative degradation of proanthocyanidins under basic conditions, *J. Agric. Food Chem.* 2004, 52, 2292–2296.
- [207] Cheynier, V., Polyphenols in foods are more complex than often thought, Am. J. Clin. Nutr. 2005, 82, 223S-229S.
- [208] Razmkhab, S., Lopez-Toledano, A., Ortega, J. M., Mayen, M. et al., Adsorption of phenolic compounds and browning products in white wines by yeasts and their cell walls, J. Agric. Food Chem. 2002, 50, 7432–7437.
- [209] Brenna, O. V., Tomaselli, N., Pagliarini, E., Study of Amarone Valpolicella wine aging using chemical parameters, *Ital. J. Food Sci.* 2005, 17, 59–66.
- [210] Huber, E., Wendelin, S., Kobler, A., Berghofer, E., Eder, R., Determination of phenolic composition, sensory characteristics and anti-oxidative capacity during the ripening process of four southern Tyrolean red wine cultivars, *Mitt. Kloster-neuburg* 2005, 55, 3–21.
- [211] Sun, B., Spranger, M. I., Changes in the phenolic composition of Tinta Miúda red wines after 2 years of ageing in bottle: Effect of winemaking technologies, *Eur. Food Res. Technol.* 2005, 221, 305–312.
- [212] Peterson, J., Dwyera, J., Jacquesa, P., Randa, W., et al., Tea variety and brewing techniques influence flavonoid content of black tea, J. Food Compost. Anal. 2004, 17, 397–405.
- [213] Lin, D., Zhu, L., Polycyclic aromatic hydrocarbons: Pollution and source analysis of a black tea, *J. Agric. Food Chem.* 2004, 52, 8268–8271.
- [214] Lee, S. C., Kim, S. Y., Jeong, S. M., Park, J. H., Effect of farinfrared irradiation on catechins and nitrite scavenging activity of green tea, *J. Agric. Food Chem.* 2006, 54, 399– 403.
- [215] Labbe, D., Tremblay, A., Bazinet, L., Effect of brewing temperature and duration on green tea catechin solubilization: Basis for production of EGC and EGCG-enriched fractions, Sep. Purif. Technol. 2006, 49, 1–9.
- [216] Duh, P.-D., Yen, G.-C., Yen, W.-Y., Wang, B.-S., Chang, L.-W., Effects of Pu-erh tea on oxidative damage and nitric oxide scavenging, J. Agric. Food Chem. 2004, 52, 8169–8176.
- [217] Wolfe, K., Wu, X., Liu, R. H., Antioxidant activity of apple peels, J. Agric. Food Chem. 2003, 51, 609–614.
- [218] Zhu, Q. Y., Hammerstone, J. F., Lazarus, S. A., Schmitz, H. H., Keen, C. L., Stabilizing effect of ascorbic acid on flavan-3-ols and dimeric procyanidins from cocoa, *J. Agric. Food Chem.* 2003, 51, 828–833.
- [219] Righetto, A. M., Netto, F. M., Carraro, F., Chemical composition and antioxidant activity of juices from mature and immature acerola (*Malpighia emarginata DC*), Food Sci. Technol. Int. 2005, 11, 315–321.
- [220] Mendez, C. M. V., Delgado, M. A. R., Rodriguez, E. M. R., Romero, C. D., Content of free phenolic compounds in cultivars of potatoes harvested in Tenerife (Canary Islands), *J. Agric. Food Chem.* 2004, 52, 1323–1327.
- [221] Cardador-Martínez, A., Loarca-Piña, G., Oomah, B. D., Antioxidant activity in common beans (*Phaseolus vulgaris* L.), *J. Agric. Food Chem.* 2002, 50, 6975–6980.

- [222] Duenas, M., Sun, B., Hernandez, T., Estrella, I., Spranger, I. M., Proanthocyanidin composition in the seed coat of lentils (*Lens culinaris* L.), *J. Agric. Food Chem.* 2003, 51, 7999–8004.
- [223] Del Pozo-Insfran, D., Brenes, C. H., Saldivar, S. O. S., Tal-cott, S. T., Polyphenolic and antioxidant content of white and blue corn (*Zea mays L.*) products, *Food Res. Int.* 2006, 39, 696–703.
- [224] Kirakosyan, A., Seymour, E., Kaufman, P. B., Warber, S., et al., Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress, J. Agric. Food Chem. 2003, 51, 3973–3976.
- [225] Chiu, C. Y., Lee, M. J., Liao, C. L., Lin, W. L., et al., Inhibitory effect of hot-water extract from dried fruit of *Crataegus pinnatifida* on low-density lipoprotein (LDL) oxidation in cell and cell-free systems, *J. Agric. Food Chem.* 2003, 51, 7583 7588.
- [226] Woffenden, H. M., Ames, J. M., Chandra, S., Anese, M., Nicoli, M. C., Effect of kilning on the antioxidant and prooxidant activities of pale malts, *J. Agric. Food Chem.* 2003, 50, 4925–4933.
- [227] Gu, L., Kelm, M. A., Hammerstone, J. F., Beecher, G., et al., Concentration of proanthocyanidins in common foods and estimations of normal consumption, J. Nutr. 2004, 134, 613–617.
- [228] Ahmed, J., Shivhare, U. S., Raghavan, G. S. V., Thermal degradation kinetics of anthocyanin and visual colour of plum puree, Eur. Food Res. Technol. 2004, 218, 525–528.
- [229] Solovchenko, A., Schmitz-Eiberger, M., Significance of skin flavonoids for UV-B-protection in apple fruits, *J. Exp.* Bot. 2003, 54, 1977–1984.
- [230] Mateus, N., Carvalho, E., Carvalho, A. R. F., Melo, A., et al., Isolation and structural characterization of new acylated anthocyanin-vinyl-flavanol pigments occurring in aging red wines, J. Agric. Food Chem. 2003, 51, 277–282.
- [231] Garcia-Marino, M., Rivas-Gonzalo, J. C., Ibanez, E., Garcia-Moreno, C., Recovery of catechins and proanthocyanidins from winery by-products using subcritical water extraction, *Anal. Chim. Acta* 2006, 563, 44–50.
- [232] Colahan-Sederstrom, P. M., Peterson, D. G., Inhibition of key aroma compound generated during ultrahigh-temperature processing of bovine milk via epicatechin addition, J. Agric. Food Chem. 2005, 53, 398–402.
- [233] Stark, T., Bareuther, S., Hofmann, T., Sensory-guided decomposition of roasted cocoa nibs (*Theobroma cacao*) and structure determination of taste-active polyphenols, *J. Agric. Food Chem.* 2005, 53, 5407–5418.
- [234] Bakowska-Barczak, A., Acylated anthocyanins as stable, natural food colorants a review, *Pol. J. Food Nutr. Sci.* 2005, *14*, 107–116.
- [235] Kammerer, D. R., Schieber, A., Carle, R., Black carrots history, recent findings and perspectives, *Fruit Process*. 2005, 15, 302–308.
- [236] Lachman, J., Hamouz, K., Red and purple coloured potatoes as a significant antioxidant source in human nutrition a review, *Plant Soil Environ*. 2005, *51*, 477–482.
- [237] Morais, H., Ramos, C., Forgács, E., Oliviera, J., Influence of storage conditions on the stability of monomeric anthocyanins studied by reversed-phase high-performance liquid chromatography, J. Chromatogr. B 2002, 770, 297–301.

- [238] Walker, T., Morris, J., Threlfall, R., Main, G., pH Modification of Cynthiana wine using cationic exchange, J. Agric. Food Chem. 2002, 50, 6346–6352.
- [239] Alonso, A. M., Guillén, D. A., Barroso, C. G., Puertas, B., García, A., Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content, *J. Agric. Food Chem.* 2002, 50, 5832–5836.
- [240] Talcott, S. T., Brenes, C. H., Pires, D. M., Del Pozo-Insfran, D., Phytochemical stability and color retention of copigmented and processed Muscadine grape juice, *J. Agric. Food Chem.* 2003, 51, 957–963.
- [241] Wang, H., Race, E. J., Shrikhande, A. J., Anthocyanin transformation in Cabernet Sauvignon wine during aging, *J. Agric. Food Chem.* 2003, 51, 7989–7994.
- [242] Ali, A., Strommer, J., A simple extraction and chromatographic system for the simultaneus analysis of anthocyanins and stilbenes of *Vitis* species, *J. Agric. Food Chem.* 2003, *51*, 7246–7251.
- [243] Es-Safi, N.-E., Cheynier, V., Flavanols and anthocyanins as potent compounds in the formation of new pigments during storage and aging of red wine, ACS Symp. Ser. 2004, 886, 143–159.
- [244] Lee, J. H., Talcott, S. T., Fruit maturity and juice extraction influences ellagic acid derivatives and other antioxidant polyphenolics in Muscadine grapes, *J. Agric. Food Chem.* 2004, 52, 188–195.
- [245] Vidal, S., Hayasaka, Y., Meudec, E., Cheynier, V., Skouroumounis, G., Fractionation of grape anthocyanin classes using multilayer coil countercurrent chromatography with step gradient elution, J. Agric. Food Chem. 2004, 52, 713– 719.
- [246] Pozo-Bayon, M. A., Monagas, M., Polo, M. C., Gomez-Cordoves, C., Occurence of pyronoanthocyanins in sparkling wines manufactured with red grape varieties, *J. Agric. Food Chem.* 2004, 52, 1300–1306.
- [247] Sahari, M. A., Boostani, F. M., Hamidi, E. Z., Effect of low temperature on the ascorbic acid content and quality characteristics of frozen strawberry, *Food Chem.* 2004, 86, 357– 363.
- [248] Del Alamo Sanza, M., Fernández Escudero, J. A., De Castro Torío, R., Changes in phenolic compounds and colour parameters of red wine aged with oak chips and in oak barrels, Food Sci. Technol. Int. 2004, 10, 233–241.
- [249] Bellincontro, A., De Santis, D., Botondi, R., Villa, I., Mencarelli, F., Different postharvest dehydration rates affect quality characteristics and volatile compounds of Malvasia, Trebbiano and Sangiovese grapes for wine production, *J. Sci. Food Agric*. 2004, 84, 1791–1800.
- [250] Pan, J., Vicente, A. R., Martínez, G. A., Chaves, A. R., Civello, P. M., Combined use of UV-C irradiation and heat treatment to improve postharvest life of strawberry fruit, *J. Sci. Food Agric*. 2004, 84, 1831–1838.
- [251] Ayala-Zavalaa, J. F., Wang, S. Y., Wang, C. Y., González-Aguilarc, G. A., Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit, *Lebensm. Wiss. Technol.* 2004, 37, 687–695.
- [252] Romero-Cascales, I., Ortega-Regules, A., Lopez-Roca, J. M., Fernandez-Fernandez, J. I., Gomez-Plaza, E., Differences in anthocyanin extractability from grapes to wines according to variety, Am. J. Enol. Viticult. 2005, 56, 212–219.

- [253] Gonzalez-Neves, G., Barreiro, L., Gil, G., Franco, J., et al., Anthocyanic composition of Tannat, Cabernet-Sauvignon and Merlot grapes and red wines: Utilities of the profiles obtained for the varietal characterization, Bull. l'O.I.V. 2005, 78, 30–44.
- [254] Schierer, K., Christmann, M., Wendelin, S., Eder, R., Influence of macrooxidation of the mash from grapes of the red wine cultivar 'Rondo' on fermentation and wine quality, *Mitt. Klosterneuburg* 2005, 55, 101–106.
- [255] Cozzolino, D., Cynkar, W. U., Dambergs, R. G., Janik, L., Gishen, M., Effect of both homogenisation and storage on the spectra of red grapes and on the measurement of total anthocyanins, total soluble solids and pH by visula near infrared spectroscopy, *J. Near Infrared Spectrosc.* 2005, 13, 213–223.
- [256] Talcott, S. T., Peele, J. E., Brenes, C. H., Red clover isoflavonoids as anthocyanin color enhancing agents in Muscadine wine and juice, *Food Res. Int.* 2005, 38, 1205–1212.
- [257] Medina, K., Boido, E., Dellacassa, E., Carrau, F., Yeast interactions with anthocyanins during red wine fermentation, Am. J. Enol. Viticult. 2005, 56, 104–109.
- [258] Romero-Cascales, I., Fernández-Fernández, J. I., López-Roca, J. M., Gómez-Plaza, E., The maceration process during winemaking extraction of anthocyanins from grape skins into wine, *Eur. Food Res. Technol.* 2005, 221, 163–167.
- [259] Revilla, E., López, J. F., Ryan, J.-M., Anthocyanin pattern of Tempranillo wines during ageing in oak barrels and storage in stainless-steel tanks, *Eur. Food Res. Technol.* 2005, 220, 592-596.
- [260] Radoi, F., Kishida, M., Kawasaki, H., Characteristics of wines made by *Saccharomyces* mutants which produce a polygalacturonase under wine-making conditions, *Biosci. Biotechnol. Biochem.* 2005, 69, 2224–2226.
- [261] Brenes, C. H., Del Pozo-Insfran, D., Talcott, S. T., Stability of copigmented anthocyanins and ascorbic acid in a grape juice model system, J. Agric. Food Chem. 2005, 53, 49–56.
- [262] Cevallos-Casals, B. A., Byrne, D., Okie, W. R., Cisneros-Zevallos, L., Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties, *Food Chem.* 2006, 96, 273–280.
- [263] Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., Núñez, M. J., Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace, *J. Agric. Food Chem.* 2005, 53, 2111–2117.
- [264] Threlfall, R. T., Morris, J. R., Howard, L. R., Brownmiller, C. R., Walker, T. L., Pressing effects on yield, quality, and nutraceutical content of juice, seeds, and skins from black beauty and sunbelt grapes, *J. Food Sci.* 2005, 70, S167– S171.
- [265] Monagas, M., Gómez-Cordovés, C., Bartolomé, B., Evolution of the phenolic content of red wines from *Vitis vinifera* L. during ageing in bottle, *Food Chem.* 2005, 95, 405–412.
- [266] Canals, R., Llaudy, M. C., Valls, J., Canals, J. M., Zamora, F., Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening, *J. Agric. Food Chem.* 2005, 53, 4019–4025.
- [267] Budic-Leto, I., Lovric, T., Kljusuric, J. G., Pezo, I., Vrhovsek, U., Anthocyanin composition of the red wine Babic affected by maceration treatment, *Eur. Food Res. Technol*. 2006, 222, 397–402.

- [268] Alcalde-Eon, C., Escribano-Bailon, M. T., Santos-Buelga, C., Rivas-Gonzalo, J., Changes in the detailed pigment composition of red wine during maturity and ageing – A comprehensive study, *Anal. Chim. Acta* 2006, 563, 238–254.
- [269] Alvarez, I., Aleixandre, J. L., Garcia, M. J., Lizama, V., Impact of prefermentative maceration on the phenolic and volatile compounds in Monastrell red wines, *Anal. Chim. Acta* 2006, 563, 109–115.
- [270] Castillo-Sanchez, J. J., Mejuto, J. C., Garrido, J., Garcia-Falcon, S., Influence of wine-making protocol and fining agents on the evolution of the anthocyanin content, colour and general organoleptic quality of Vinhao wines, *Food Chem.* 2006, 97, 130–136.
- [271] Meyers, K. J., Watkins, C. B., Pritts, M. P., Liu, R. H., Antioxidant and antiproliferative activities of strawberries, *J. Agric. Food Chem.* 2003, 51, 6887–6892.
- [272] Wicklung, T., Rosenfeld, H. J., Martinsen, B. K., Sundfor, M. W. et al., Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions, Lebensm. Wiss. Technol. 2005, 38, 387–391.
- [273] Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., González-Aguilar, G. A., Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit, *Eur. Food Res. Technol.* 2005, 221, 731–738.
- [274] Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., Sargent, S. A., Possible influences of water loss and polyphenol oxidase activity on anthocyanin content and discoloration in fresh ripe strawberry (cv. Oso Grande) during storage at 1°C, J. Food Sci. 2005, 70, S79 – S83.
- [275] McDougall, G. J., Shpiro, F., Dobson, P., Smith, P., et al., Different polyphenolic components of soft fruits inhibit αamylase and α-glucosidase, J. Agric. Food Chem. 2005, 53, 2760–2766.
- [276] Klopotek, Y., Otto, K., Böhm, V., Processing strawberries to different products alters contens of vitamin C, total phenolics, total anthocyanins, and antioxidant capacity, *J. Agric. Food Chem.* 2005, 53, 5640–5646.
- [277] Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., Sargent, S. A., Physicochemical changes during strawberry development in the field compared to those that occur in harvested fruit during storage, J. Sci. Food Agric. 2006, 86, 180–190.
- [278] Bohm, V., Kuhnert, S., Rohm, K., Scholze, G., Improving the nutritional quality of microwave-vacuum dried strawberries: A preliminary study, *Food Sci. Technol. Int.* 2006, *12*, 67–75.
- [279] Hamauzu, Y., Kume, C., Changes in fruit quality, phenolic compounds and antioxidant capacity of fresh prunes during storage, *Acta Hortic*. 2005, 682, 557–563.
- [280] Bhardwaj, J. C., Jashi, V. K., Kaushal, B. B., Influence of enzyme, sodium benzoate and yeast immobilization on fermentation of plum must by *Schizosaccharomyces pombe* yeast, *Acta Hortic*. 2005, 696, 533–540.
- [281] Miguel, G., Fontes, C., Antunes, D., Neves, A., Martins, D., Anthocyanin concentration of "Assaria" pomegranate fruits during different cold storage conditions, *J. Biomed. Biotech*nol. 2004, 2004, 338–342.
- [282] Miguel, G., Dandlen, S., Antunes, D., Neves, A., Martins, D., The effect of two methods of pomegranate (*Punica granatum* L.) juice extraction on quality during storage at 4°C, J. Biomed. Biotechnol. 2004, 2004, 332–337.

- [283] Alper, N., Bahceci, K. S., Acar, J., Effects of various ultrafiltration treatments on some quality parameters of pomegranate juice, *Fruit Process.* 2005, *15*, 33–37.
- [284] Lopez-Rubira, V., Conesa, A., Allende, A., Artes, F., Shelf life and overall quality of minimally processed pomegranate arils modified atmosphere packaged and treated with UV-C, *Postharvest Biol. Technol.* 2005, 37, 174–185.
- [285] Vásquez-Caicedo, A. L., Sruamsiri, P., Carle, R., Neidhart, S., Accumulation of all-trans-β-carotene and its 9-cis and 13-cis stereoisomers during postharvest ripening of nine Thai mango cultivars, J. Agric. Food Chem. 2005, 53, 4827–4835.
- [286] Kirca, A., Cemeroglu, B., Degradation kinetics of anthocyanins in blood orange juice and concentrate, *Food Chem*. 2003, 81, 583-587.
- [287] Ingallinera, B., Spagna, G., Barbagallo, R. N., Bognanni, R., Rapisarda, P., Oxidation activity in ready-to-eat oranges, *Acta Hortic*. 2005, 682, 1925–1928.
- [288] Scordino, M., Di Mauro, A., Passerini, A., Maccarone, E., Selective recovery of anthocyanins and hydroxycinnamates from a byproduct of citrus processing, *J. Agric. Food Chem.* 2005, 53, 651–658.
- [289] Lo Piero, A. R., Puglisi, I., Rapisarda, P., Petrone, G., Anthocyanins accumulation and related gene expression in red orange fruit induced by low temperature storage, *J. Agric. Food Chem.* 2005, 53, 9083–9088.
- [290] Liu, X., Xiao, G., Chen, W., Xu, Y., Wu, J., Quantification and purification of mulberry anthocyanins with macroporous resins, *J. Biomed. Biotechnol.* 2004, 2004, 326–331.
- [291] Tsai, P. J., Delva, L., Yu, T. Y., Huang, Y. T., Dufosse, L., Effects of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating, Food Res. Int. 2005, 38, 1059–1065.
- [292] Wand, S. J. E., Theron, K. I., Ackerman, J., Marais, S. J. S., Harvest and post-harvest apple fruit quality following applications of kaolin particle film in South African orchards, *Sci. Hortic*. 2006, 107, 271–276.
- [293] Kaiser, C., Levin, J., Wolstenholme, B. N., Anthocyanidin separation in exocarps of 'Mauritius' litchi (*Litchi chinensis* Sonn.) following methods to improve the rind colour, S. Afr. J. Plant Soil 2005, 22, 158–162.
- [294] Jiang, Y., Li, J., Jiang, W., Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature, *Lebensm. Wiss. Technol.* 2005, 38, 757–761.
- [295] Sivakumar, D., Regnier, T., Demoz, B., Korsten, L., Effect of different post-harvest treatments on overall quality retention in litchi fruit during low temperature storage, *J. Hortic. Sci. Biotechnol.* 2005, 80, 32–38.
- [296] Tian, S.-P., Li, B.-Q., Xu, Y., Effects of O<sub>2</sub> and CO<sub>2</sub> concentrations on physiology and quality of litchi fruit in storage, *Food Chem.* 2005, *91*, 659–663.
- [297] Sousa, M. B., Canet, W., Alvarez, M. D., Tortosa, M. E., The effect of the pre-treatments and the long and short-term frozen storage on the quality of raspberry (cv. Heritage), *Eur. Food Res. Technol.* 2005, 221, 132–144.
- [298] McDougall, G. J., Dobson, P., Smith, P., Blake, A., Stewart, D., Assessing potential bioavailability of raspberry anthocyanins using an *in vitro* digestion system, *J. Agric. Food Chem.* 2005, 53, 5896–5904.
- [299] González, E. M., de Ancos, B., Pilar Cano, M., Relation between bioactive compounds and free radical-scavenging capacity in berry fruits during frozen storage, *J. Sci. Food Agric*. 2003, 83, 722–726.

- [300] Talavera, S., Felgines, C., Texier, O., Besson, C., *et al.*, Anthocyanins are efficiently absorbed from the stomach in anesthetized rats, *J. Nutr.* 2003, *133*, 4178–4182.
- [301] Siriwoharn, T., Wrolstad, R. E., Finn, C. E., Pereira, C. B., Influence of cultivar, maturity, and sampling on blackberry (*Rubus* L. hybrids) anthocyanins, polyphenolics, and antioxidant properties, *J. Agric. Food Chem.* 2004, 52, 8021– 8030.
- [302] Matsumoto, M., Hara, H., Chiji, H., Kasai, T., Gastroprotective effect of red pigments in black chokeberry fruit (*Aronia melanocarpa* Elliot) on acute gastric hemorrhagic lesions in rats, *J. Agric. Food Chem.* 2004, 52, 2226–2229.
- [303] Lohachoompol, V., Srzednicki, G., Craske, J., The change of total anthocyanins in blueberries and their antioxidant effect after drying and freezing, *J. Biomed. Biotechnol.* 2004, 2004, 248–252.
- [304] Su, M. S., Silva, J. L., Antioxidant activity, anthocyanins, and phenolics of rabbiteye blueberry (*Vaccinium ashei*) byproducts as affected by fermentation, *Food Chem.* 2006, 97, 447–451.
- [305] Varming, C., Andersen, M. L., Poll, L., Influence of thermal treatment on black currant (*Ribes nigrum* L.) juice aroma, *J. Agric. Food Chem.* 2004, 52, 7628–7636.
- [306] Rubinskiene, M., Viskelis, P., Jasutiene, I., Viskeliene, R., Bobinas, C., Impact of various factors on the composition and stability of black currant anthocyanins, *Food Res. Int.* 2005, 38, 867–871.
- [307] Buchert, J., Koponen, J. M., Suutarinen, M., Mustranta, A., et al., Effect of enzyme-aided pressing on anthocyanin yield and profiles in bilberry and blackcurrant juices, J. Sci. Food Agric. 2005, 85, 2548–2556.
- [308] Rubinskiene, M., Jasutiene, I., Venskutonis, P. R., Viskelis, P., HPLC determination of the composition and stability of blackcurrant anthocyanins, *J. Chromatogr. Sci.* 2005, 43, 478–482.
- [309] McDougall, G. J., Gordon, S., Brennan, R., Stewart, D., Anthocyanin-flavanol condensation products from black currant (*Ribes nigrum L.*), J. Agric. Food Chem. 2005, 53, 7878-7885.
- [310] Gunes, G., Liu, R. H., Christopher, B., Watkins, C. B., Controlled-atmosphere effects on postharvest quality and anti-oxidant activity of cranberry fruits, *J. Agric. Food Chem.* 2002, 50, 5932–5938.
- [311] Ozgen, M., Farag, K., Ozgen, S., Palta, J. P., Lysophosphatidylethanolamine accelerates color development and promotes shelf life of cranberries, *Hortscience* 2005, 40, 127– 130.
- [312] Maldonado, R., Molina-Garcia, A. D., Sanchez-Ballesta, M. T., Escribano, M. I., Merodio, C., High CO<sub>2</sub> atmosphere modulating the phenolic response associated with cell adhesion and hardening of *Annona cherimola* fruit stored at chilling temperature, *J. Agric. Food Chem.* 2002, 50, 7564–7569.
- [313] Turker, N., Aksay, S., Ekiz, H. I., Effect of storage temperature on the stability of anthocyanins of a fermented black carrot (*Daucus carota* var. L.) beverage: Shalgam, *J. Agric. Food Chem.* 2004, 52, 3807–3813.
- [314] Kirca, A., Ozkan, M., Cemeroglu, B., Stability of black carrot anthocyanins in various fruit juices and nectars, *Food Chem.* 2006, 97, 598–605.

- [315] Turker, N., Erdogdu, F., Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (*Daucus carota* var. L.), *J. Food Eng.* 2006, 76, 579 583.
- [316] Siomos, A. S., Gerasopoulos, D., Tsouvaltzis, P., Prestorage hot water treatments inhibit postharvest anthocyanin synthesis and retain overall quality of white asparagus spears, *Postharvest Biol. Technol.* 2005, *38*, 160–168.
- [317] Wong, P. K., Yusof, S., Ghazali, H. M., Man, Y. B. C., Optimization of hot water extraction of roselle juice using response surface methodology: A comparative study with other extraction methods, *J. Sci. Food Agric*. 2003, 83, 1273–1278.
- [318] Piga, A., Del Caro, A., Pinna, I., Agabbio, M., Anthocyanin and colour evolution in naturally black table olives during anaerobic processing, *Lebensm. Wiss. Technol.* 2005, 38, 425–429.
- [319] Dourtoglou, V. G., Marnalos, A., Makris, D. P., Storage of olives (*Olea europaea*) under CO<sub>2</sub> atmosphere: Effect on anthocyanins, phenolics, sensory attributes and *in vitro* antioxidant properties, *Food Chem.* 2006, 99, 342–349.
- [320] Choung, M. G., Choi, B. R., An, Y. N., Chu, Y. H., Cho, Y. S., Anthocyanin profile of Korean cultivated kidney bean (*Phaseolus vulgaris L.*), J. Agric. Food Chem. 2003, 51, 7040-7043.

- [321] Kim, M. Y., Iwai, K., Onodera, A., Matsue, H., Identification and antiradical properties of anthocyanins in fruits of *Viburnum dilatatum* Thunb., *J. Agric. Food Chem.* 2003, 51, 6173–6177.
- [322] Philpott, M., Gould, K. S., Lim, C., Ferguson, L. R., In situ and in vitro antioxidant activity of sweet potato anthocyanins, J. Agric. Food Chem. 2004, 52, 1511–1513.
- [323] Wrolstad, R. E., Durst, R. W., Lee, J., Tracking color and pigment changes in anthocyanin products, *Trends Food Sci. Technol.* 2005, *16*, 423–428.
- [324] Kaur, C., Kapoor, H. C., Antioxidant activity of some fruits in Indian diet, *Acta Hortic*. 2005, 696, 563–565.
- [325] Lattanzio, V., Bioactive polyphenols: Their role in quality and storability of fruit and vegetables, *J. Appl. Bot.* 2003, 77, 128–146.
- [326] Rababah, T. M., Ereifej, K. I., Howard, L., Effect of ascorbic acid and dehydration on concentrations of total phenolics, antioxidant capacity, anthocyanins, and color in fruits, J. Agric. Food Chem. 2005, 53, 4444–4447.
- [327] Eiro, M. J., Heinonen, M., Anthocyanin color behavior and stability during storage: Effect of intermolecular copigmentation, *J. Agric. Food Chem.* 2002, 50, 7461–7466.